博碩士論文 100326601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.175.191.168
姓名 阮達祿(Dac-loc Nguyen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
(Chemical characterization and source identification of aerosol at Sonla, northern Vietnam over biomass burning period during 7SEAS campaign in 2013)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年春季為中南半島地區生質燃燒活動極為盛行的時期,本研究於2013年春季在越南北部的山羅省(海拔675m)配合7-SEAS (七個東南亞國家研究)活動進行氣膠採樣,主要目的是在北越南探討相關資料很稀少的近污染源生質燃燒氣膠化學組成。
  研究結果顯示在生質燃燒事件期間,2013年春季山羅省PM10氣膠受PM2.5氣膠(平均值: 57 ± 27 μg m-3, 範圍: 13—134 μg m-3)主導,PM2.5佔PM10的比例為75 ± 9 %。關於水溶性離子分析結果,硫酸根離子為PM2.5質量濃度主要貢獻物種,平均濃度為5.51 ± 2.43 μg m-3,所佔比例為11.04 ± 5.62 %。接下來為銨根離子、硝酸根離子及鉀離子,其平均濃度分別為1.94 ± 0.94 μg m-3、1.18 ± 0.57 μg m-3、1.18 ± 0.57 μg m-3;佔PM2.5質量濃度平均比例分別為4.09 ± 2.52 %、 2.13 ± 0.80 %及 1.08 ± 0.53 %。氣膠碳成分分析結果,有機碳及元素碳中主要物種分別為OC3及EC1-OP,且其平均濃為20.16 ± 9.57 μg m-3 、3.45 ± 1.77 μg m-3。此外,水可溶性有機碳(WSOC)佔有機碳比例為56 ± 12%,這表示於BB事件中所產生的碳成分氣膠具有潛在的含水特性。HULIS (Humic-like-substances)為一種可吸光有機物質,其含量為7.40 ± 4.54 μg m-3,佔有機碳的比例為35 ± 9%。同時氣膠單醣無水化合物則以左旋葡萄糖為主,所佔比例為3.09 ± 0.72%而平均濃度則是1.80 ± 0.96 μg m-3 。當生質燃燒指標物種K+、OC3、EC1-OP、HULIS 及左旋葡萄糖彼此間相關性判定係數R2都達0.62以上(N=44),印證本地區氣膠受BB影響。
對於生質燃燒追蹤物探討,在越南北方山羅省採樣期間的樣品,以及用於氣相層析-質譜儀分析的14個選定樣品,左旋葡聚醣及甘露醣濃度比值為15.6 ±1.4, 顯示山羅省主要燃燒的物質為硬木及草地植披。
本研究也測定環境中PM2.5顆粒裡一次及二次有機氣膠追蹤物隨時間變化的組成,可偵測到多於50種有機化合物包括醣類、木質素、樹脂產物、脂肪酸、芳香族酸和生物氧化產物(如: 2-methyltetrols, 烯烴三元醇, 3 - 羥基戊二酸)。考慮不同來源地區的氣流軌跡並比較追蹤物的結果,根據氣膠中有機分子的組成我們能更了解中南半島北方生質燃燒的影響途徑,以及更多氣膠資訊和氧化過程。
最後,本文首次應用穩定同位素碳-13 (δ13C)在北越南PM2.5 氣膠的研究,其範圍落在−26.6 和 −25.4‰之間,這指出有C3植物和化石燃料燃燒的貢獻。

關鍵字:中南半島生質燃燒,氣膠化學物種,有機氣膠追蹤物,左旋葡萄糖、同位素碳-13

摘要(英) Every spring, biomass burning (BB) is very active in the northern Indochina peninsula. Atmospheric aerosol was collected at Sonla, northern Vietnam (675 m a.s.l.) during 7-SEAS (Seven SouthEast Asian Studies) campaign in 2013. The objective of this study was to investigate comprehensively the chemical characteristics of near-source BB aerosol in the northern Vietnam where related data were scarce.
During the BB period, the results revealed that PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) dominated PM10 at Sonla in 2013 (mean: 57 ± 27 μg m-3, range: 13—134 μg m-3) with a PM2.5 to PM10 ratio of 0.75 ± 0.09. With regard to bulk water-soluble inorganic component, SO42- is the dominated specie, the average concentration was 5.51 ± 2.43 μg m-3, accounting for 11.04 ± 5.62 % in PM2.5 mass, followed by NH4+ (1.94 ± 0.94 μg m-3, 4.09 ± 2.52 %), NO3- (1.18 ± 0.57 μg m-3, 2.13 ± 0.80 %), and K+ (1.18 ± 0.57 μg m-3, 1.87 ± 0.53 %). As for the bulk carbonaceous content, organic carbon (OC) and elemental carbon(EC) were averaged at 20.16 ± 9.57 μg m-3 (35.62 ± 6.64 %) and 3.45 ± 1.77 μg m-3 (6.22 ± 2.03 %), respectively; OC3 was the most significant fraction in OC and EC1-OP was dominated in elemental carbon (EC) fractions. Furthermore, the high water-soluble OC (WSOC) fraction in OC (56 ± 12%) implies that carbonaceous aerosol from BB plume would be potentially hygroscopic. Humic-like-substances (HULIS), known as light-absorbing-organic component, was found at 7.40 ± 4.54 μg m-3, constituting 35 ± 9% in OC. Meanwhile, levoglucosan, as a biomass burning marker, is noted as the predominant species in aerosol anhydrosugars, averaged at 1.80 ± 0.96 μg m-3 (3.09 ± 0.72%). The linear correlation matrix of the near-source BB tracers such as K+, OC3, EC1-OP, HULIS and levoglucosan were correlated well with each other (R2≧0.62, N=44), indicating that aerosols were influenced intensively by BB in the area.
By employing the ratio of PM2.5 levoglucosan to mannosan, averaged at 15.6 ± 1.4 during the study period at the Sonla site, as well as 14 selected samples for the analysis of BB markers by gas chromatography–mass spectrometry, the major burnt materials was inferred to be from hardwood and grass/non-woody vegetation.
The temporal variations of both primary and secondary aerosol tracers from the 14 selected samples were also identified. More than 50 organic compounds including saccharide compounds, lignin and resin products, fatty acids, aromatic acids, poly-acids, and biogenic oxidation products (e.g., 2-methyltetrols, alkene triols, 3-hydroxyglutaric acid) were resolved in the aerosol particles. By comparing the tracers of aerosol samples classified with backward airflow trajectories from different source regions, one can better understand the influence of BB on the organic molecular composition of the transported aerosols and provide additional important information on aerosol sources and oxidation processes.
Finally, stable carbon δ13C isotopic data ranged from −26.6 to −25.4‰ in PM2.5 were revealed for the first time in the northern Vietnam, which indicated a contribution from burning of C3 plants and fossil fuel combustion
關鍵字(中) ★ 同位素碳-13
★ 中南半島生質燃燒
★ 氣膠化學物種
★ 含碳比例
★ 左旋葡聚醣
★ 二次有機氣膠追蹤物
關鍵字(英) ★ isotope δ13C.
★ Indochina biomass burning
★ aerosol chemical
★ organic aerosol tracers
★ Levoglucosan
★ carbon fractions
論文目次 Abstract vi
Contents x
Figures xiv
Tables xix
Equation xxi
Abbreviations xxii
Chapter 1. Introduction 1
1.1. Motivations 1
1.2. Objectives 3
Chapter 2. Literature Review 5
2.1. Overview of biomass burning and anthropogenic sources in northern Southeast Asia region and East Asia 5
2.1.1 Seasonal and inter-annual variations of biomass burning episode in Southeast Asia region 5
2.1.2. Overview of other anthropogenic sources in Southeast Asia and China 9
2.1.3. Mechanism of transport and dispersion of pollutants to Sonla site in northern Southeast Asian region 10
2.2. Chemical characteristics of bulk biomass burning aerosol 11
2.3.1. Water-soluble inorganic ion component 12
2.3.2. Carbonaceous components 13
2.3. Organic speciation by means of gas chromatography- mass spectrometry (GC-MS): primary sources and secondary oxidation implication 21
2.3.1. Primary saccharides including monosaccharides and sugar alcohols 21
2.3.2. Fatty acids 21
2.3.3. Aromatic and poly-acids (SOA) 23
2.3.4. SOA tracers for isoprene and pinene oxidation 24
2.3.5. Plastic emission and fossil fuel combustion or anthropogenic source 25
2.4. Biomass burning categories and combustion phase 25
2.4.1. Biomass burning categories 26
2.4.2. Combustion phase 28
2.5. Chemical characteristics of biomass burning and characteristics of the species ratio 29
2.5.1. Carbonaceous component 29
2.6. Stable carbon (δ13C) isotopic compositions 30
2.7. Literature review of Aerosol characteristics in Northern Viet Nam 31
2.8. Fine particulate matter pollution and human health implication 37
Chapter 3. Experimental 39
3.1. Research framework 39
3.2. Sampling site and sample collection 39
3.2.1. Short overview of Vietnam and forest situation in Vietnam and in Indochina Peninsula 39
3.2.2. Sampling site and sampling collection 42
3.3. Sampling methodology 46
3.4. Chemical analysis 47
3.4.1. PM mass measurement 47
3.4.2. Water soluble inorganic ions measurement 48
3.4.3. Carbonaceous aerosols components 53
3.4.4. Anhydro-sugars 56
3.4.5. Water soluble organic carbon 57
3.4.6. Humic-like substance (HULIS) 58
3.4.7. Extraction and analysis for selective fourteen samples with gas chromatography – mass spectrometry (GC-MS) and isotope 60
3.5. Meteorological and gaseous pollutant measurement; air mass backward trajectory from HYSLPIT model and fire image satellite data from MODIS fire image satellite 62
Chapter 4. Results and Discussion 65
4.1. Weather conditions and gaseous pollutants; and PM10-2.5 and PM2.5 aerosol mass concentrations 65
4.2. PM10-2.5 and PM2.5 aerosol concentration of soluble ions 74
4.3. PM10-2.5 and PM2.5 aerosol concentration and bulk carbonaceous component 76
4.3.1. PM10-2.5 and PM2.5 aerosol organic carbon and elemental carbon 76
4.3.2. PM2.5 Water-soluble organic carbon (WSOC) 80
4.3.3. Humic-like substances (HULIS) concentration 86
4.4. PM2.5 organic aerosol concentration 90
4.4.1. PM2.5 aerosol concentration of mono-saccharide anhydrous compound 90
4.5. PM2.5 aerosol source inference, combustion phase in BB and burnt material 92
4.5.1. PM2.5 aerosol source inference 92
4.5.2. BB combustion phase 101
4.5.3. Biomass burning categories 101
4.5.4. Estimate of biomass burning contribution to OC 102
4.5.5. Chemical characteristics of the local contribution to aerosol burden at sampling site: an exceptional case 102
4.5.6. Comparison of PM2.5 composition in bulk inorganic and organic components among trajectory types. 103
4.6. PM2.5 Organic molecular composition for selective samples analyzed by GC-MS 105
4.6.1. Biomass burning tracers: high concentrations in mid-March during intensive BB period: 109
4.6.2. Plastic emission and fossil fuel combustion 113
4.6.3. Primary saccharides and their temporal variations 115
4.6.4. Fatty acids 118
4.6.5 Aromatic and poly-acids (SOA) 120
4.6.6. SOA tracers for isoprene and pinene oxidation 123
4.7. Preliminary stable carbon isotopic (δ13C) compositions 126
Chapter 5. Conclusion, and Recommendation 128
5.1. Conclusion/Summary 128
References 130
Chapter 7. Appendix 143
Appendix I. 5-day backward trajectories of aerosol arriving at Sonla, northern Vietnam, from late February to early April, 2013 143
A. Airflow pathway from South China and typical MODIS fire image 143
B. Airflow pathway from Indochina 146
C. Airflow pathway from South and east of sampling site. 151
Appendix II. Wind rose at Sonla, northern Vietnam, from late February to early April, 2013 155
Appendix III. Topography maps at northern Vietnam 157
Appendix IV. Observation at the site for exceptional case to understand the data 159
參考文獻 Aggarwal, S. G., and Kawamura, K., 2009: Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmos Environ, 43, 2532-2540.
Andreae, M. O., 2009: A new look at aging aerosols. Science, 326, 1493-1494.
Andreae, M. O., and Crutzen, P. J., 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276, 1052-1058.
Andreae, M. O., and Merlet, P., 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cy, 15, 955-966.
Andreae, M. O., and Gelencsér, A., 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148.
Andreae, M. O., and Ramanathan, V., 2013: Climate’s dar k forcings. Science, 340, 280-281.
Andreae, M. O., Jones, C. D., and Cox, P. M., 2005: Strong present-day aerosol cooling implies a hot future. Nature, 435, 1187-1190.
Andreae, M. O., Andreae, T. W., Annegarn, H., Beer, J., Cachier, H., Le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F. G., and Zenker, T., 1998: Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research D: Atmospheres, 103, 32119-32128.
Bac, V. T., and Hien, P. D., 2009: Regional and local emissions in red river delta, Northern Vietnam. Air Qual Atmos Hlth, 2, 157-167.
Baduel, C., Voisin, D., and Jaffrezo, J.-L., 2009: Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles. Atmos Chem Phys, 9, 5949-5962.
Baduel, C., Monge, M. E., Voisin, D., Jaffrezo, J.-L., George, C., Haddad, I. E., Marchand, N., and D’Anna, B., 2011: Oxidation of atmospheric humic like substances by ozone: a kinetic and structural analysis approach. Environ Sci Technol, 45, 5238-5244.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H., 2008: Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos Environ, 42, 588-593.
Bell, M. L., Samet, J. M., and Dominici, F., 2004: Time-series studies of particulate matter. Annual review of public health, 25, 247-280.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G., 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J Geophys Res-Atmos, 106, 23073-23095.
Bond, T., Doherty, S., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., and Koch, D., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres.
CACHIER, H., DUCRET, J., and BREMOND, M.-. 1991: Biomass burning aerosols in a savanna region of the Ivory Coast. Global biomass burning- Atmospheric, climatic, and biospheric implications(A 92-37626 15-42). Cambridge, MA, MIT Press, 1991, 174-180.
Cahill, T. M., Seaman, V. Y., Charles, M. J., Holzinger, R., and Goldstein, A. H., 2006: Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California. J Geophys Res-Atmos, 111.
Cao, G. L., Zhang, X. Y., and Zheng, F. C., 2006a: Inventory of black carbon and organic carbon emissions from China. Atmos Environ, 40, 6516-6527.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J. C., and Watson, J. G., 2006b: Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res, 6, 106-122.
Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., An, Z. S., Fung, K. K., Watson, J. G., Zhu, C. S., and Liu, S. X., 2005: Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmos Chem Phys, 5, 3127-3137.
Carmichael, G. R., Tang, Y., Kurata, G., Uno, I., Streets, D., Woo, J. H., Huang, H., Yienger, J., Lefer, B., Shetter, R., Blake, D., Atlas, E., Fried, A., Apel, E., Eisele, F., Cantrell, C., Avery, M., Barrick, J., Sachse, G., Brune, W., Sandholm, S., Kondo, Y., Singh, H., Talbot, R., Bandy, A., Thorton, D., Clarke, A., and Heikes, B., 2003: Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment. J Geophys Res-Atmos, 108.
Chan, C. Y., Chan, L. Y., Harris, J. M., Oltmans, S. J., Blake, D. R., Qin, Y., Zheng, Y. G., and Zheng, X. D., 2003: Characteristics of biomass burning emission sources, transport, and chemical speciation in enhanced springtime tropospheric ozone profile over Hong Kong. J Geophys Res-Atmos, 108.
Chang, D., and Song, Y., 2010: Estimates of biomass burning emissions in tropical Asia based on satellite-derived data′ published in Atmos. (vol 10, pg 2335, 2010). Atmos Chem Phys, 10, 2613-2613.
Chen, L. W. A., Moosmuller, H., Arnott, W. P., Chow, J. C., Watson, J. G., Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., and Hao, W. M., 2007: Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ Sci Technol, 41, 4317-4325.
Chen, T. C., Yen, M. C., Huang, W. R., and Gallus, W. A., 2002: An East Asian cold surge: Case study. Mon Weather Rev, 130, 2271-2290.
Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., and Moosmuller, H., 2004a: Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol, 38, 4414-4422.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell, R. G., 1993: The dri thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment - Part A General Topics, 27 A, 1185-1201.
Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., and Green, M. C., 2004b: Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54, 185-208.
Chow, J. C., Watson, J. G., Mauderly, J. L., Costa, D. L., Wyzga, R. E., Vedal, S., Hidy, G. M., Altshuler, S. L., Marrack, D., Heuss, J. M., Wolff, G. T., Pope, C. A., 3rd, and Dockery, D. W., 2006: Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc, 56, 1368-1380.
Chuang, M.-T., Chou, C. C. K., Sopajareepom, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., and Lee, C.-T., 2012: Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmos Environ.
Chuang, M.-T., Chou, C. C. K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., and Lee, C.-T., 2013: Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmos Environ, 78, 72-81.
Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencser, A., and Maenhaut, W., 2004a: Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos Environ, 38, 4093-4098.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W., 2004b: Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 1173-1176.
Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., and Edney, E. O., 2007: Hydroxydicarboxylic acids: Markers for secondary organic aerosol from the photooxidation of alpha-pinene. Environ Sci Technol, 41, 1628-1634.
Co, H. X., Dung, N. T., Oanh, N. T. K., Hang, N. T., Phuc, N. H., and Le, H. A., 2014: Levels and Composition of Ambient Particulate Matter at a Mountainous Rural Site in Northern Vietnam.
Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., and Samet, J. M., 2005: The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health, Part A, 68, 1301-1307.
Cohen, D. D., Crawford, J., Stelcer, E., and Bac, V. T., 2010a: Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmos Environ, 44, 320-328.
Cohen, D. D., Crawford, J., Stelcer, E., and Vuong, T. B., 2010b: Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008. Atmos Environ, 44, 3761-3769.
Decesari, S., Facchini, M. C., Fuzzi, S., and Tagliavini, E., 2000: Characterization of water‐soluble organic compounds in atmospheric aerosol: A new approach. Journal of Geophysical Research: Atmospheres (1984–2012), 105, 1481-1489.
Decesari, S., Fuzzi, S., Facchini, M. C., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G., Falkovich, A., Rudich, Y., Claeys, M., Pashynska, V., Vas, G., Kourtchev, I., Vermeylen, R., Hoffer, A., Andreae, M. O., Tagliavini, E., Moretti, F., and Artaxo, P., 2006: Characterization of the organic composition of aerosols from Rondonia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos Chem Phys, 6, 375-402.
Dinar, E., Taraniuk, I., Graber, E. R., Katsman, S., Moise, T., Anttila, T., Mentel, T. F., and Rudich, Y., 2006: Cloud Condensation Nuclei properties of model and atmospheric HULIS. Atmos Chem Phys, 6, 2465-2481.
Docherty, K. S., Stone, E. A., Ulbrich, I. M., DeCarlo, P. F., Snyder, D. C., Schauer, J. J., Peltier, R. E., Weber, R. J., Murphy, S. M., Seinfeld, J. H., Grover, B. D., Eatough, D. J., and Jimenez, J. L., 2008: Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environ Sci Technol, 42, 7655-7662.
Draxler, R., Rolph, G., and LIT, H., 2012: Model access via NOAA ARL READY website.
Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., and Logan, J. A., 2003: Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res-Atmos, 108.
Engling, G., Herckes, P., Kreidenweis, S. M., Malm, W. C., and Collett, J. L., 2006a: Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmos Environ, 40, 2959-2972.
Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K., and Chan, C. Y., 2009: Size-Resolved Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw. Aerosol Sci Tech, 43, 662-672.
Engling, G., Zhang, Y. N., Chan, C. Y., Sang, X. F., Lin, M., Ho, K. F., Li, Y. S., Lin, C. Y., and Lee, J. J., 2011: Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B, 63, 117-128.
Engling, G., Carrico, C. M., Kreidenweis, S. M., Collett Jr, J. L., Day, D. E., Malm, W. C., Lincoln, E., Min Hao, W., Iinuma, Y., and Herrmann, H., 2006b: Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos Environ, 40, 299-311.
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., and Liousse, C., 1998: Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research: Atmospheres (1984–2012), 103, 32107-32118.
Fine, P. M., Cass, G. R., and Simoneit, B. R. T., 2001: Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ Sci Technol, 35, 2665-2675.
——, 2004a: Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science, 21, 387-409.
Fine, P. M., Chakrabarti, B., Krudysz, M., Schauer, J. J., and Sioutas, C., 2004b: Diurnal variations of individual organic compound constituents of ultrafine and accumulation mode particulate matter in the Los Angeles basin. Environ Sci Technol, 38, 1296-1304.
Fu, P. Q., Kawamura, K., and Barrie, L. A., 2009: Photochemical and Other Sources of Organic Compounds in the Canadian High Arctic Aerosol Pollution during Winter-Spring. Environ Sci Technol, 43, 286-292.
Fu, P. Q., Kawamura, K., Chen, J., Charriere, B., and Sempere, R., 2013: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation. Biogeosciences, 10, 653-667.
Fu, P. Q., Kawamura, K., Okuzawa, K., Aggarwal, S. G., Wang, G. H., Kanaya, Y., and Wang, Z. F., 2008: Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. J Geophys Res-Atmos, 113.
Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y. L., Liu, Y., Tachibana, E., Aggarwal, S. G., Okuzawa, K., Tanimoto, H., Kanaya, Y., and Wang, Z. F., 2012: Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmos Chem Phys, 12, 8359-8375.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M., 2003: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J Geophys Res-Atmos, 108.
Gatari, M., Wagner, A., and Boman, J., 2005: Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya. Science of the Total Environment, 341, 241-249.
Gatari, M. J., Boman, J., Wagner, A., Janhäll, S., and Isakson, J., 2006: Assessment of inorganic content of PM2.5 particles sampled in a rural area north-east of Hanoi, Vietnam. Science of The Total Environment, 368, 675-685.
Gautam, R., Christina Hsu, N., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., Tsay, S.-C., and Lau, W. K., 2012: Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmos Environ.
Gelencsér, A., 2004: Organic Chemistry of Aerosol. Carbonaceous Aerosol, 149-220.
Giannoni, M., Martellini, T., Del Bubba, M., Gambaro, A., Zangrando, R., Chiari, M., Lepri, L., and Cincinelli, A., 2012: The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environmental Pollution, 167, 7-15.
Graber, E. R., and Rudich, Y., 2006: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos Chem Phys, 6, 729-753.
Graham, B., Guyon, P., Taylor, P. E., Artaxo, P., Maenhaut, W., Glovsky, M. M., Flagan, R. C., and Andreae, M. O., 2003: Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry. J Geophys Res-Atmos, 108.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Koll, P., and Andreae, M. O., 2002: Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. J Geophys Res-Atmos, 107.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A Global-Model of Natural Volatile Organic-Compound Emissions. J Geophys Res-Atmos, 100, 8873-8892.
Hai, C. D., and Oanh, N. T. K., 2013: Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmos Environ, 78, 105-112.
Han, Y. M., Cao, J. J., Lee, S. C., Ho, K. F., and An, Z. S., 2010: Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an, China. Atmos. Chem. Phys., 10, 595-607.
Han, Y. N., Cao, J. J., An, Z. S., Chow, J. C., Watson, J. G., Jin, Z., Fung, K., and Liu, S. X., 2007: Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere, 69, 526-533.
Hang, N. T., and Kim Oanh, N. T., 2014: Chemical characterization and sources apportionment of fine particulate pollution in a mining town of Vietnam. Atmospheric Research, 145–146, 214-225.
Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W. M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., Collett, J. L., Kreidenweis, S. M., and Robinson, A. L., 2011: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos Chem Phys, 11, 7669-7686.
Hersey, S. P., Craven, J. S., Schilling, K. A., Metcalf, A. R., Sorooshian, A., Chan, M. N., Flagan, R. C., and Seinfeld, J. H., 2011: The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol. Atmos Chem Phys, 11, 7417-7443.
Hien, P. D., Bac, V. T., and Thinh, N. T. H., 2004: PMF receptor modelling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmos Environ, 38, 189-201.
Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O., 2006: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos Chem Phys, 6, 3563-3570.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., and Seinfeld, J. H., 1997: Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem, 26, 189-222.
Hu, D., Bian, Q., Li, T. W. Y., Lau, A. K. H., and Yu, J. Z., 2008: Contributions of isoprene, monoterpenes, beta-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. J Geophys Res-Atmos, 113.
Iinuma, Y., Engling, G., Puxbaum, H., and Herrmann, H., 2009: A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmos Environ, 43, 1367-1371.
Iinuma, Y., Bruggemann, E., Gnauk, T., Muller, K., Andreae, M. O., Helas, G., Parmar, R., and Herrmann, H., 2007a: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res.-Atmos., 112, Doi: 10.1029/2006jd007120.
——, 2007b: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res-Atmos, 112.
Jenkin, M. E., and Clemitshaw, K. C., 2000: Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ, 34, 2499-2527.
Jimenez, J., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J., DeCarlo, P., Allan, J., Coe, H., and Ng, N., 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525-1529.
Kaufman, Y. J., and Fraser, R. S., 1997: The effect of smoke particles on clouds and climate forcing. Science, 277, 1636-1639.
Kawamura, K., Ishimura, Y., and Yamazaki, K., 2003: Four years′ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem Cy, 17.
Kim, K. H., Sekiguchi, K., Furuuchi, M., and Sakamoto, K., 2011: Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos Environ, 45, 1581-1590.
Kourtchev, I., Warnke, J., Maenhaut, W., Hoffmann, T., and Claeys, M., 2008a: Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 73, 1308-1314.
Kourtchev, I., Ruuskanen, T., Keronen, P., Sogacheva, L., Dal Maso, M., Reissell, A., Chi, X., Vermeylen, R., Kulmala, M., and Maenhaut, W., 2008b: Determination of isoprene and α‐/β‐pinene oxidation products in boreal forest aerosols from Hyytiälä, Finland: diel variations and possible link with particle formation events. Plant biology, 10, 138-149.
Krivácsy, Z., Kiss, G., Ceburnis, D., Jennings, G., Maenhaut, W., Salma, I., and Shooter, D., 2008: Study of water-soluble atmospheric humic matter in urban and marine environments. Atmospheric Research, 87, 1-12.
Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., and Andreae, M., 2010a: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos Chem Phys, 10, 2209-2225.
Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O., 2010b: Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondonia, Brazil. Journal of Aerosol Science, 41, 118-133.
Lee, C. T., Chuang, M. T., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, S. C., Wang, S. H., Huang, H., Chen, H. W., Liu, Y. L., Weng, G. H., Lai, H. Y., and Hsu, S. P., 2011: The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmos Environ, 45, 5784-5794.
Lewandowski, M., Jaoui, M., Kleindienst, T. E., Offenberg, J. H., and Edney, E. O., 2007: Composition of PM2.5 during the summer of 2003 in Research Triangle Park, North Carolina. Atmos Environ, 41, 4073-4083.
Lewerissa, K. B., and Boman, J., 2007: Study of trace elements and soot in aerosols from a coal-fired power plant in northern Vietnam. Environmental monitoring and assessment, 130, 301-309.
Li, C., Tsay, S.-C., Hsu, N. C., Kim, J. Y., Howell, S. G., Huebert, B. J., Ji, Q., Jeong, M.-J., Wang, S.-H., Hansell, R. A., and Bell, S. W., 2012: Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA. Atmos Environ.
Li, J., Posfai, M., Hobbs, P. V., and Buseck, P. R., 2003: Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. J Geophys Res-Atmos, 108.
Lim, S. S., Vos, T., and Flaxman, A. D., 2013: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 (vol 380, pg 2224, 2012). Lancet, 381, 1276-1276.
Lin, N.-H., Tsay, S.-C., Maring, H. B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K. H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J. S., Reid, J. S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C. N., Sayer, A. M., Holben, B. N., Chu, Y.-C., Nguyen, X. A., Sopajaree, K., Chen, S.-J., Cheng, M.-T., Tsuang, B.-J., Tsai, C.-J., Peng, C.-M., Schnell, R. C., Conway, T., Chang, C.-T., Lin, K.-S., Tsai, Y. I., Lee, W.-J., Chang, S.-C., Liu, J.-J., Chiang, W.-L., Huang, S.-J., Lin, T.-H., and Liu, G.-R., 2013: An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos Environ, 78, 1-19.
Lin, P., Engling, G., and Yu, J., 2010a: Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmos Chem Phys, 10, 6487-6500.
Lin, P., Huang, X.-F., He, L.-Y., and Zhen Yu, J., 2010b: Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science, 41, 74-87.
Liu, C. G., Zhang, P., Wang, Y. F., Yang, B., and Shu, J. N., 2012: Heterogeneous Reactions of Particulate Methoxyphenols with NO3 Radicals: Kinetics, Products, and Mechanisms. Environ Sci Technol, 46, 13262-13269.
Lukacs, H., Gelencser, A., Hammer, S., Puxbaum, H., Pio, C., Legrand, M., Kasper-Giebl, A., Handler, M., Limbeck, A., Simpson, D., and Preunkert, S., 2007: Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe. J Geophys Res-Atmos, 112.
Mauzerall, D. L., Logan, J. A., Jacob, D. J., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Heikes, B., Sachse, G. W., Singh, H., and Talbot, B., 1998: Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic. Journal of Geophysical Research: Atmospheres (1984–2012), 103, 8401-8423.
Mayol-Bracero, O. L., Guyon, P., Graham, B., Roberts, G., Andreae, M. O., Decesari, S., Facchini, M. C., Fuzzi, S., and Artaxo, P., 2002: Water-soluble organic compounds in biomass burning aerosols over Amazonia - 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res-Atmos, 107.
McCarthy, J. J., 2001: Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K., and Kawamura, K., 2009: Dicarboxylic acids and water‐soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. Journal of Geophysical Research: Atmospheres (1984–2012), 114.
Miyazaki, Y., Jung, J., Fu, P., Mizoguchi, Y., Yamanoi, K., and Kawamura, K., 2012: Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer. Journal of Geophysical Research: Atmospheres, 117, n/a-n/a.
Novakov, T., and Corrigan, C., 1996: Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophysical Research Letters, 23, 2141-2144.
Novakov, T., Andreae, M. O., Gabriel, R., Kirchstetter, T. W., Mayol-Bracero, O. L., and Ramanathan, V., 2000: Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels? Geophysical Research Letters, 27, 4061-4064.
O′Brien, R. E., Laskin, A., Laskin, J., Liu, S., Weber, R., Russell, L. M., and Goldstein, A. H., 2013: Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmos Environ, 68, 265-272.
Oanh, N. T. K., Ly, B. T., Tipayarom, D., Manandhar, B. R., Prapat, P., Simpson, C. D., and Liu, L. J. S., 2011: Characterization of particulate matter emission from open burning of rice straw. Atmos Environ, 45, 493-502.
Oanh, N. T. K., Pongkiatkul, P., Cruz, M. T., Dung, N. T., Phillip, L., Zhuang, G., and Lestari, P., 2012: Monitoring and Source Apportionment for Particulate Matter Pollution in Six Asian Cities. Integrated Air Quality Management: Asian Case Studies, 97.
Oanh, N. T. K., Upadhyaya, N., Zhuang, Y. H., Hao, Z. P., Murthy, D. V. S., Lestari, P., Villarin, J. T., Chengchua, K., Co, H. X., Dung, N. T., and Lindgren, E. S., 2006: Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos Environ, 40, 3367-3380.
Oros, D. R., and Simoneit, B. R., 2001: Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl Geochem, 16, 1513-1544.
Oros, D. R., bin Abas, M. R., Omar, N. Y. M. J., Rahman, N. A., and Simoneit, B. R. T., 2006: Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Appl Geochem, 21, 919-940.
Otto, A., Gondokusumo, R., and Simpson, M. J., 2006: Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Appl Geochem, 21, 166-183.
Pathak, R. K., Wang, T., Ho, K. F., and Lee, S. C., 2011: Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmos Environ, 45, 318-325.
Phuong, V. T., 2007: Forest environment of Vietnam: features of forest vegetation and soils. Forest Environments in the Mekong River Basin, Springer, 189-200.
Pio, C., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., and Sanchez‐Ochoa, A., 2007: Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west‐east transect across Europe. Journal of Geophysical Research: Atmospheres (1984–2012), 112.
Pio, C. A., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., and Gelencser, A., 2008: Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ, 42, 7530-7543.
Plewka, A., Gnauk, T., Brüggemann, E., and Herrmann, H., 2006: Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmos Environ, 40, Supplement 1, 103-115.
Pope, C. A., 3rd, and Dockery, D. W., 2006: Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc, 56, 709-742.
Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M. J., and Brunekreef, B., 2013: Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The lancet oncology, 14, 813-822.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P., 2005: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5, 799-825.
Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and Rullkötter, J., 2006: Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C< sub> 4 grass waxes. Organic Geochemistry, 37, 1303-1332.
Rudich, Y., Donahue, N. M., and Mentel, T. F., 2007: Aging of organic aerosol: Bridging the gap between laboratory and field studies. Annu Rev Phys Chem, 58, 321-352.
Ryu, S. Y., Kwon, B. G., Kim, Y. J., Kim, H. H., and Chun, K. J., 2007: Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84, 362-373.
Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., and Hillamo, R., 2007: Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmos Environ, 41, 3577-3589.
Sackett, W., 1989: Stable carbon isotope studies on organic matter in the marine environment. Handbook of environmental isotope geochemistry, 3, 139-169.
Salma, I., Mészáros, T., Maenhaut, W., Vass, E., and Majer, Z., 2010: Chirality and the origin of atmospheric humic-like substances. Atmos Chem Phys, 10, 1315-1327.
Samburova, V., Zenobi, R., and Kalberer, M., 2005: Characterization of high molecular weight compounds in urban atmospheric particles. Atmos Chem Phys, 5, 2163-2170.
Schidlowski, M., 1987: Application of stable carbon isotopes to early biochemical evolution on Earth. Annual Review of Earth and Planetary Sciences, 15, 47.
Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I. L., and Puxbaum, H., 2008a: Chemical characterisation of particle emissions from burning leaves. Atmos Environ, 42, 9070-9079.
Schmidl, C., Marr, I. L., Caseiro, A., Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A., and Puxbaum, H., 2008b: Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ, 42, 126-141.
Schmidl, C., Marr, L. L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A., and Puxbaum, H., 2008c: Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ, 42, 126-141.
Schurgers, G., Arneth, A., Holzinger, R., and Goldstein, A. H., 2009: Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos Chem Phys, 9, 3409-3423.
Sidhu, S., Gullett, B., Striebich, R., Klosterman, J., Contreras, J., and DeVito, M., 2005: Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions. Atmos Environ, 39, 801-811.
Simoneit, B. R., and Mazurek, M. A., 1982: Organic matter of the troposphere—II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment (1967), 16, 2139-2159.
Simoneit, B. R., and Elias, V. O., 2001: Detecting organic tracers from biomass burning in the atmosphere. Marine Pollution Bulletin, 42, 805-810.
Simoneit, B. R., Schauer, J. J., Nolte, C., Oros, D. R., Elias, V. O., Fraser, M., Rogge, W., and Cass, G. R., 1999a: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ, 33, 173-182.
Simoneit, B. R. T., 2002: Biomass burning - A review of organic tracers for smoke from incomplete combustion. Appl Geochem, 17, 129-162.
Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., and Huebert, B. J., 2004a: Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. J Geophys Res-Atmos, 109.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., and Cass, G. R., 1993: Lignin Pyrolysis Products, Lignans, and Resin Acids as Specific Tracers of Plant Classes in Emissions from Biomass Combustion. Environ Sci Technol, 27, 2533-2541.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R., 1999b: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ, 33, 173-182.
Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F., and Didyk, B. M., 2004b: Sugars - Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ Sci Technol, 38, 5939-5949.
Sinha, P., Hobbs, P. V., Yokelson, R. J., Bertschi, I. T., Blake, D. R., Simpson, I. J., Gao, S., Kirchstetter, T. W., and Novakov, T., 2003: Emissions of trace gases and particles from savanna fires in southern Africa. J Geophys Res-Atmos, 108.
Smith, D., Harrison, R. M., Luhana, L., Pio, C. A., Castro, L., Tariq, M. N., Hayat, S., and Quraishi, T., 1996: Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmos Environ, 30, 4031-4040.
Song, C. H., Ma, Y., Orsini, D., Kim, Y. P., and Weber, R. J., 2005: An investigation into the ionic chemical composition and mixing state of biomass burning particles recorded during TRACE-P P3B Flight#10. J Atmos Chem, 51, 43-64.
Song, J., He, L., Peng, P. a., Zhao, J., and Ma, S., 2012: Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China. Aerosol Sci Tech, 46, 533-546.
Stales, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J., 1997: The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667-749.
Stibig, H. J., Achard, F., and Fritz, S., 2004: A new forest cover map of continental southeast Asia derived from SPOT‐VEGETATION satellite imagery. Applied Vegetation Science, 7, 153-162.
Streets, D. G., Yarber, K. F., Woo, J. H., and Carmichael, G. R., 2003: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy, 17.
Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., Wild, M., Wu, Y., and Yu, C., 2009: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006. J Geophys Res-Atmos, 114.
Sullivan, A. P., Peltier, R. E., Brock, C. A., de Gouw, J. A., Holloway, J. S., Warneke, C., Wollny, A. G., and Weber, R. J., 2006: Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources. J Geophys Res-Atmos, 111.
Sullivan, A. P., Holden, A. S., Patterson, L. A., McMeeking, G. R., Kreidenweis, S. M., Malm, W. C., Hao, W. M., Wold, C. E., and Collett, J. L., 2008: A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. J Geophys Res-Atmos, 113.
Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H., 2006: Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J Phys Chem A, 110, 9665-9690.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H. C., and Kuo, S. C., 2013: Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmos Environ, 78, 93-104.
Tsay, S.-C., Hsu, N. C., Lau, W. K. M., Li, C., Gabriel, P. M., Ji, Q., Holben, B. N., Judd Welton, E., Nguyen, A. X., Janjai, S., Lin, N.-H., Reid, J. S., Boonjawat, J., Howell, S. G., Huebert, B. J., Fu, J. S., Hansell, R. A., Sayer, A. M., Gautam, R., Wang, S.-H., Goodloe, C. S., Miko, L. R., Shu, P. K., Loftus, A. M., Huang, J., Kim, J. Y., Jeong, M.-J., and Pantina, P., 2013: From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmos Environ, 78, 20-34.
Varga, B., Kiss, G., Ganszky, I., Gelencsér, A., and Krivácsy, Z., 2001: Isolation of water-soluble organic matter from atmospheric aerosol. Talanta, 55, 561-572.
Wang, G. H., Kawamura, K., Lee, S., Ho, K. F., and Cao, J. J., 2006: Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environ Sci Technol, 40, 4619-4625.
Wang, G. H., Kawamura, K., Hatakeyama, S., Takami, A., Li, H., and Wang, W., 2007: Aircraft measurement of organic aerosols over China. Environ Sci Technol, 41, 3115-3120.
Wang, G. H., Kawamura, K., Xie, M. J., Hu, S. Y., Cao, J. J., An, Z. S., Waston, J. G., and Chow, J. C., 2009: Organic Molecular Compositions and Size Distributions of Chinese Summer and Autumn Aerosols from Nanjing: Characteristic Haze Event Caused by Wheat Straw Burning. Environ Sci Technol, 43, 6493-6499.
Wang, W., Iinuma, Y., Kahnt, A., Ryabtsova, O., Mutzel, A., Vermeylen, R., Van der Veken, P., Maenhaut, W., Herrmann, H., and Claeys, M., 2013: Formation of secondary organic aerosol marker compounds from the photooxidation of isoprene and isoprene-derived alkene diols under low-NOx conditions. Faraday Discuss, 165, 261-272.
Wimolwattanapun, W., Hopke, P. K., and Pongkiatkul, P., 2011: Source apportionment and potential source locations of PM2.5 and PM2.5-10 at residential sites in metropolitan Bangkok. Atmos Pollut Res, 2, 172-181.
Wonaschutz, A., Hersey, S. P., Sorooshian, A., Craven, J. S., Metcalf, A. R., Flagan, R. C., and Seinfeld, J. H., 2011: Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County. Atmos Chem Phys, 11, 8257-8270.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G., 2000: Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos Environ, 34, 1641-1653.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee, Y.-A., and Lin, C.-C., 2012: Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmos Environ.
Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., and Hyer, E. J., 2008: A system for operational aerosol optical depth data assimilation over global oceans. Journal of Geophysical Research: Atmospheres, 113, D10208.
Zhang, X., Hecobian, A., Zheng, M., Frank, N., and Weber, R., 2010: Biomass burning impact on PM 2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmos Chem Phys, 10, 6839-6853.
Zhang, Y. Y., Obrist, D., Zielinska, B., and Gertler, A., 2013: Particulate emissions from different types of biomass burning. Atmos Environ, 72, 27-35.
Zheng, G., He, K., Duan, F., Cheng, Y., and Ma, Y., 2013: Measurement of humic-like substances in aerosols: A review. Environmental Pollution, 181, 301-314.

指導教授 李崇德(Chung-te Lee) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明