博碩士論文 100327018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.238.199.4
姓名 羅世偉(Shi-wei Luo)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 微米導流柱改良之流道板對全釩液流電池性能影響之分析
(Enhanced micro-pillars flow field design for performance gains in vanadium redox flow batteries)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全釩液流電池 (Vanadium Redox Flow Battery, VRFB)在近年內備受關注,因為其具有體積小、功率大、放電穩定及效率高等特性,被廣泛利用在工商業中。而在本研究中,我們針對電池內之電解液流道進行分析,提出四種不同流道設計並藉由測定電池輸出功率及效率之實驗來驗證各種設計之優劣,其中在流道中安插入微米導流柱的設計顯著的改善了流體在流道中的均勻性,且電池性能與原始設計相比之下增加了13%的功率密度(mW•cm-2)。此外,實驗經過多次的取樣以驗證全釩液流電池的電化學性能以及計算其平均效率,結果證實微米導流柱的設計能有效的改良全釩液流電池之性能,且本研究也進一步針對電池的充放電循環進行測試,電池能穩定地保持在72.5%的高能量效率。另一方面,在本研究的改良流道設計之基礎下,我們對組合全釩液流電池之夾持力進行研究,分析在不同夾持力下電池性能之改變,並證實電池在最適合之夾持力下能大幅提高電池68.5%的電流密度(mA•cm-2),更能有效增加37.3%的電化學反應面積 (Electrochemical Surface Area, ECSA)。
摘要(英) In this work, we propose a uniformly distributed electrolytes system based on micro pillars enhanced flow field designs for vanadium redox flow battery (VRFB). Experimental validation is carried out using a power-based efficiency method and measured for four different entrance bypass designs. Results show that a micro pillars flow field at the entrance bypass region can result in a significant improvement of 13% power density, as compared with the original design. In addition, the effect of asymmetry anode/cathode flow rates and the cycling tests are measured for verifying the electrochemical performance and the average efficiency of the VRFB unit cell. From the results, it is clearly indicated that the asymmetry flow rate between each half-cell with the selection of our micro pillars enhanced design can result in an optimal flow rate for each half-cell at which the maximum efficiency can be achieved. Moreover, the charge/discharge cycling tests shows consecutive and consistently smooth curve such that the cyclic performance can be stably maintained and a relatively higher average value of energy efficiency 72.5 % is obtained for our VRFB design.
On the other word, based on the micro-pillars design, the effect of different assembly torque which is used to tighten the bolts surrounded the end plate is investigated. There is an optimal assembly torque can result in a significant improvement of 68.5% current density when compared with the original torque. Furthermore, the effect of cyclic voltammograms (CV) is measured to verify the electrochemical performance of the VRFB unit cell. The results clearly indicate that the optimal assembly torque with enhanced micro-pillars design can result in the 37.3% increment of estimated electrochemical surface area (ECSA).
關鍵字(中) ★ 全釩液流電池
★ 微米導流柱
★ 流場均勻性
關鍵字(英) ★ Vanadium Redox Flow Battery
★ micro-pillars
★ flow uniformity
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 全釩氧化還原液流電池 1
1-3 研究動機 2
第二章 文獻回顧 3
2-1 全釩液流電池之簡介 3
2-2 全釩液流電池之相關研究 5
2-2-1 多孔性電極 5
2-2-2 離子交換膜 8
2-2-3 流道板設計 10
第三章 各種流道設計之流場均勻性與全釩液流電池之性能分析 14
3-1 導論 14
3-2 流道板設計與流場均勻性之分析 14
3-2-1 流道板幾何特性與模擬分析 14
3-2-2 流道板設計 17
3-2-3流場均勻性分析實驗 18
3-3 電化學實驗分析 22
3-3-1 micro-pillars設計之迴流區模擬 22
3-3-2實驗架構設立 23
3-3-3 VRFB充放電曲線測試 25
3-3-4 VRFB實驗之參數設立 27
3-3-5 VRFB之循環測試 31
第四章 結論 34
參考文獻 37
參考文獻 [1] A.R. Landgrebe, S.W. Donley “Battery Storage in Residential Applications of Energy from Photovoltaic Sources.” Applied Energy 15 (1983) 127-137.
[2] J. Leadbetter, L.G. Swan “Selection of battery technology to support grid-integrated renewable electricity.” Journal of Power Sources 216 (2012) 376-386.
[3] B. Turker, S.A. Klein, E.M. Hammer, B. Lenz, L. Komsiysk “Modeling a vanadium redox flow battery system for large scale applications.” Energy Conversion and Management 66 (2013) 26-32.
[4] J. Chen, Z. Xu, B. Li “Research on the characteristics of the vanadium redox-flow battery in power systems applications.” Journal of Power Sources 241 (2013) 396-399.
[5] M. Schreibera, M. Harrera, A. Whiteheadb, H. Bucsicha, M. Dragschitza, E. Seiferta, P. Tymciw, “Practical and commercial issues in the design and manufacture of vanadium flow batteries.” Journal of Power Sources 206 (2012) 483-489.
[6] C. Ponce de Leon, A. Frıas-Ferrer, J. Gonzalez-Garcıa, D.A. Szanto, F.C. Walsh “Redox flow cells for energy conversion.” Journal of Power Sources 160 (2006) 716-732.
[7] Y.K. Fuh, T.C. Chang, J.P. Zhang “Electroless Plating on Porous Carbon Felts in Redox Flow Batteries and Thickness Effect on the Electrical and Mechanical Properties.” International Journal of Electrochemistry Society 8 (2013) 8989-8999.
[8] T.C. Chang, J.P. Zhang, Y.K. Fuh “Electrical, mechanical and morphological properties of compressing carbon felt electrode for all vanadium redox flow battery.” Journal of Power Sources 245 (2014) 66-75.
[9] D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, M.M. Mench “Dramatic performance gains in vanadium redox flow batteries through modified cell architecture.” Journal of Power Sources 206 (2012) 450-453.
[10] T.J. Latha, S. Jayanti “Ex-situ experimental studies on serpentine flow field design for redox flow battery systems.” Journal of Power Sources 248 (2014) 140-146.
[11] H. Tian, R.Y. Chein, K.L. Hsueh, C.H. Wu, F.H. Tsau “Design and modeling of electrolyte pumping power reduction in redox flow cells.” Rare Metals 30 (2011) 16-21.
[12] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang, S.K. Lo “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor.” International Journal of Hydrogen Energy 37 (2012) 13060-13066.
[13] C.M. Huang, S.S. Shy, C.H. Lee “On flow uniformity in various interconnects and its influence to cell performance of planar SOFC.” Journal of Power Sources 183 (2008) 205-213.
[14] C.M. Huang, S.S. Shy, H.H. Li, C.H. Lee “The impact of flow distributors on the performance of planar solid oxide fuel cell.” Journal of Power Sources 195 (2010) 6280-6286.
[15] B. Dunn, H. Kamath, J.M. Tarascon ”Electrical Energy Storage for the Grid-A Battery of Choices.” Science 334 (2011) 928-935.
[16] P.K. Leung, X.H. Li, C. Ponce de Leon, L. Berlouis, C.T. John Low and F.C. Walsh “Progress in redox flow batteries, remaining challenges and their applications in energy storage.” Royal Society of Chemistry 2 (2012) 10125-10156.
[17] S.C. Raghu, M. Ulaganathan, T.M. Lim, M. Skyllas-Kazacos “Electrochemical behavior of titanium/iridium(IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery.” Journal of Power Sources 238 (2013) 103-108.
[18] S. Winardi, S.C. Raghu, M.O. Oo, Q. Yan, N. Wai, T.M. Lim, M. Skyllas-Kazacos “Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications.” Journal of Membrane Science 450 (2014) 313-322.
[19] D.Y. Chen, M.A. Hickner, E. Agar, E. C. Kumbur “Optimizing membrane thickness for vanadium redox flow batteries.” Journal of Membrane Science 437 (2013) 108-113.
[20] Q. Xu, T.S. Zhao , P.K. Leung “Numerical investigations of flow field designs for vanadium redox flow batteries.” Applied Energy 105 (2013) 47-56.
[21] X.D. Wang, Y.Y. Duan, W.M. Yan, X.F. Peng “Effects of flow channel geometry on cell performance for PEM fuel cells with parallel and interdigitated flow fields.” Electrochimica Acta 53 (2008) 5334-5343.
[22] J. Xuan, Dennis Y.C. Leung, Michael K.H. Leung, H. Wang, M. Ni “Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior.” Journal of Power Sources 196 (2011) 9391-9397.
[23] G. Wan, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang “Influence of several additives on stability and electrochemical behavior of V(V) electrolyte for vanadium redox flow battery.” Journal of Electroanalytical Chemistry 709 (2013) 31-38.
[24] 龔盈瑝,簡瑞與,「電解液與碳氈改良對全釩氧化還原電池性能改善之實驗探討」,國立中興大學,碩士論文,民國101年。
[25] C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, J.R. Morante “Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries.” Applied Energy 109 (2013) 344-351.
[26] S. Kim, E. Thomsen, G. Xia, Z. Nie, J. Bao, K. Recknagle, W. Wang, V. Viswanathan, Q. Luo, X. Wei, A. Crawford, G. Coffey, G. Maupin, V. Sprenkle “1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes.” Journal of Power Sources 237 (2013) 300-309.
[27] X. Ma, H. Zhang, C. Sun, Y. Zou, T. Zhang “An optimal strategy of electrolyte flow rate for vanadium redox flow battery.” Journal of Power Sources 203 (2012) 153-158.
[28] P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, B. Yi “Characteristics and performance of 10kW class all-vanadium redox-flow battery stack.” Journal of Power Sources 162 (2006) 1416-1420.
[29] D. Aaron, Z. Tang, A.B. Papandrew, T.A. Zawodzinski “Polarization curve analysis of all-vanadium redox flow batteries.” Journal of Applied Electrochemistry 41 (2011) 1175-1182.
[30] I. Gatto, F. Urbani, G. Giacoppo, O. Barbera, E. Passalacqua “Influence of the bolt torque on PEFC performance with different gasket materials.” International Journal of Hydrogen Energy 36 (2011) 13043-13050.
[31] C.Y. Wen, Y.S. Lin, C.H. Lu “Experimental study of clamping effects on theperformances of a single proton exchange membranefuel cell and a 10-cell stack.” Journal of Power Sources 192 (2009) 475-485.
[32] W.K. Lee, C.H. Ho, J.W. Van-Zee, M. Murthy “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell-main.” Journal of Power Sources 84 (1999) 45-51.
[33] E. Agar, C.R. Dennison, K.W. Knehr, E.C. Kumbur “Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries.” Journal of Power Sources 225 (2013) 89-94.
[34] G. Oriji, Y. Katayama, T. Miura “Investigations on V(IV)/V(V) and V(II)/V(III)redox reactions by various electrochemical methods.” Journal of Power Sources 139 (2005) 321-324.
[35] H. Zhou, H. Zhang, P. Zhao, B. Yi “Novel Cobalt coated carbon felt as high performance negative electrode in sodium polysulfide/bromine redox flow battery.” Electrochemistry 74 (2006) 296-298.
[36] F.Q. Xue, Y.L. Wang, W.H. Wang, X.D. Wang “Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery.” Electrochimica Acta 53 (2008) 6636-6642.
[37] W.H. Wang, X.D. Wang “Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery.” Electrochimica Acta 52 (2007) 6755-6762.
指導教授 李雄(Shyong Lee) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明