博碩士論文 100327019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.17.6.75
姓名 鍾於哲(Yu-che Chung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新型波長調制外差光源應用於位移量測
(A novel wavelength-modulated heterodyne light source for displacement measurement)
相關論文
★ 外差光學式光柵干涉儀之研究★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展
★ 雷射干涉儀於共焦顯微系統之軸向定位控制★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度
★ 準共光程干涉術之新式大尺度定位平台之研究★ 波長調制外差散斑干涉術應用於角度量測之研究
★ 全場光強差動式表面電漿共振偵測技術★ 基於全內反射波長調制外差干涉術小角度測量
★ 疊紋式自動準直儀系統★ 雙影像多視角結構光轉三維點資料技術發展
★ 偏振式駐波干涉儀應用於位移量測★ 雙共焦顯微鏡用於物體厚度量測
★ 以電漿診斷工具進行太陽電池用矽薄膜製程開發★ 基於全反射共光程偏振干涉術之折射率量測技術
★ 點繞射干涉儀應用於透鏡之像差量測★ Gioia 和 Chakraborty 紊流摩擦係數模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套新型的波長調制外差光源,並將此新型外差光源應用於一維
和二維準共光程光柵干涉儀之位移量測上。利用雷射二極體搭配雙折射晶體來產
生新型的外差光源,雷射二極體波長受到鋸齒波調制,並利用雙折射晶體具雙折
射率的特性,使得入射光的p 偏振光與s 偏振光產生一光程差,進而得到外差光
源。此新型外差光源的產生方式,可達到縮小體積與降低成本的功效。
首先利用四分之一波片來驗證此新型外差光源應用於相位解析的可行性,接
著應用於一維和二維準共光程光柵干涉儀之位移量測上,利用壓電平台來使光柵
位移,並利用鎖相放大器擷取因光柵位移而產生的相位變化,反推光柵位移量。
實驗證明本系統於一維準共光程光柵干涉儀之架構上量測解析度約為10
nm,於二維準共光程光柵干涉儀之Z 方向與Y 方向的量測解析度分別為10 nm
與20 nm,系統靈敏度為0.18°/nm。
摘要(英) A novel “ Wavelength-modulated heterodyne light source ” was proposed. The novel heterodyne light source was applied to the displacement measurement based on one-dimensional or two-dimensional quasi-common optical
path grating interferometry. The novel heterodyne light source used here consists of a birefringent crystal and a laser diode. The wavelength of the laser diode is modulated
by a sawtooth current signal. As a consequence of the double refraction caused by the birefringent crystal, the modulated light signal is refracted by the birefringent crystal
with two different light paths, therefore , a novel “Wavelength-modulated heterodyne light source” was proposed. The heterodyne light source can be made to a relatively small size and save much cost compared with known heterodyne light sources at present.
We first use of a quarter wave plate to validate the feasibility of the phase demodulation, then the novel heterodyne light source was applied to displacement
measurement based on one-dimensional or two-dimensional quasi-common optical path grating interferometry. We let the grating is moved by the piezoelectric, the optical phase variation which results from the grating moving will be measured by the lock-in amplifier, therefore, we can get the grating movement.
From experiment results, the resolution of the one-dimensional quasi-common optical path grating interferometry is 10 nm. The resolution in z-direction and y-direction of the two-dimensional quasi-common optical path grating
interferometry are about 10 nm and 20 nm. The sensitivity is 0.18°/nm.
關鍵字(中) ★ 外差光源
★ 位移量測
★ 外差干涉術
★ 繞射光柵
關鍵字(英) ★ heterodyne light source
★ displacement measurement
★ heterodyne interferometry
★ diffraction grating
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 2
1.2.1外差干涉術之文獻回顧 2
1.2.2波長調制外差干涉術之文獻回顧 3
1.2.3外差光柵干涉術之文獻回顧 5
1.3研究目的 8
1.4章節簡介 8
第二章 基礎理論 10
2.1外差干涉術 10
2.2波長調制外差干涉術 11
2.2.1雷射二極體 11
2.2.2雙折射晶體之波長調制外差光源 14
2.3光柵干涉術 18
2.3.1光柵位移引入繞射光相位變化 18
2.3.2光柵干涉術 21
2.4小結 22
第三章 系統架構 23
3.1元件與儀器介紹 23
3.2新型波長調制外差光源應用於四分之一波片架構 25
3.3新型波長調制外差光源應用於一維準共光程光柵干涉儀架構 27
3.4新型波長調制外差光源應用於二維準共光程光柵干涉儀架構 31
3.5相位訊號處理架構 35
3.6小結 37
第四章 實驗結果與討論 38
4.1四分之一波片相位解析量測實驗 38
4.2一維準共光程光柵干涉儀量測實驗 40
4.2.1長行程量測:45 m弦波及三角波運動 40
4.2.2中行程量測:10 m弦波及三角波運動 42
4.2.3小行程量測:1 m方波、弦波及三角波運動 44
4.2.4小行程量測:500 nm、100 nm、10 nm方波運動 46
4.2.5量測穩定度實驗 48
4.3二維準共光程光柵干涉儀量測實驗 50
4.3.1長行程量測:45 m弦波及三角波運動 50
4.3.2中小行程量測:10 m、1 m弦波及三角波運動 54
4.3.3小行程量測:1 m、500 nm、100 nm、10 nm方波運動 58
4.3.4量測穩定度實驗 65
4.4實驗討論 66
4.4.1量測解析度測試 66
4.4.2量測靈敏度測試 67
4.4.3量測速度測試 68
4.5小結 68
第五章 誤差分析 70
5.1 系統誤差 70
5.1.1偏振片方位角引入的非線性誤差 71
5.1.2半波片方位角所引入的非線性誤差 73
5.1.3餘弦誤差 74
5.2 調制深度引入的週期性非線性誤差 75
5.3 隨機誤差 79
5.3.1 溫度變化造成調制深度變化引入誤差 79
5.3.2 環境振動 81
5.3.3 材料熱物性 81
5.3.4 電子雜訊 81
5.4 小結 82
第六章 結論與未來展望 83
6.1 結論 83
6.2 未來展望 83
參考文獻 84
參考文獻 [1]. H. Taub, et al., “Principles of communication system,” McGraw-Hill, New York, USA, 1986.
[2]. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology, Vol.2, pp.88-95, 1991.
[3]. Y. Jourlin, et al., “Compact diffractive interferometric displacement sensor in reflection,” Precision Engineering, Vol.22, pp.1-6, 2002.
[4]. O. G. Helleso, et al., “Interferometric displacement sensor made by integrated optics on glass,” Sensors and Actuators A, Vol.47, pp.478-481, 1995.
[5]. T. Kubota, et al., “Interferometer for measuring displacement and distance,” Optics Letters, Vol.12, pp.310-312, 1987.
[6]. H. Kikuta, et al., “Distance measurement by the wavelength shift of laser diode light,” Applied Optics, Vol.25, pp.2976-2980, 1986.
[7]. U. P. Kumar, et al., “Two-wavelength micro-interferometry for 3-D surface profiling,” Optical and Lasers in Engineering, Vol.47, pp.223-229, 2009.
[8]. O. Sasaki, et al., “Sinusoidal phase modulating interferometry for surface profile measurement,” Applied Optics, Vol.25, pp.3137-3140, 1986.
[9]. T. Suzuki, et al., “Phase locked laser diode interferometry for surface profile measurement,” Applied Optics, Vol.28, pp.4407-4410, 1989.
[10]. R. Crane, “Interference phase measurement,” Applied Optics, Vol.8, pp.538-542, 1969.
[11]. M. H. Chiu, et al., “Angle measurement using total-internal-reflection heterodyne interferometry,” Optical Engineering, Vol.36, pp.1750-1753, 1997.
[12]. M. H. Chiu, et al., “Improved technique for measuring small angle,” Applied Optics, Vol.36, pp.7104-7106, 1997.
[13]. J. Y. Lee, et al., “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Optics Communications, Vol.256, pp.337-341, 2005.
[14]. Y. C. Hung, et al., “Direct measurement of refractive indices of a linear birefringent retardation plate,” Optics Communications, Vol.133, pp.11-16, 1997.
[15]. M. H. Chiu, et al., “Refractive index measurement based on the effects of the total internal refraction and uses of the heterodyne interferometry,” Applied Optics, Vol.36, pp.2936-2939, 1997.
[16]. D. C. Su, et al., “New type of liquid refractometer,” Optical Engineering, Vol.37, pp.2795-2797, 1998.
[17]. J. Y. Lee, et al., “A method for measuring Brewster’s angle by circularly polarized heterodyne interferometry,” Journal of Optics, Vol.29, pp.349-353, 1998.
[18]. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Applied Optics, Vol.9, pp.649-652, 1970.
[19]. Hong Zhang Hu, “Polarization heterodyne interferometry using a simple rotating analyzer. 1: Theory and error analysis,” Applied Optics, Vol.22, pp.2052-2056, 1983.
[20]. M. P. Kothiyal, et al., “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Optics Letters, Vol.9, pp.319-321, August 1984.
[21]. M. Sargent, et al., “Theory of a Zeeman laser I,” Physical Review Letters, Vol.164, pp.436-449, 1967.
[22]. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance,” Nature, Vol.55, pp.347, 1987.
[23]. S. O. Kasap, Optoelectronics and photonics, Prentice Hall Inc., New Jersey, 2001.
[24]. D. C. Su, et al., “A heterodyne interferometer using an electro-optical modulator for measuring small displacements,” Journal of Optics, Vol.27, pp.16-23, 1996.
[25]. K. H. Chen, et al., “An alternative method for measuring small displacements with differential phase difference of dual-prism and heterodyne interferometry,” Measurement, Vol.45, pp.1510-1514, 2012.
[26]. Y. Zhong, et al., “A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS,” Measurement, Vol.40, pp.623-627, 2007.
[27]. K. Creath, “Interferometric investigation of a diode laser source,” Applied Optics, Vol.24, pp.1291-1293, 1985.
[28]. K. Tatsuno, et al., “Diode laser direct modulation heterodyne interferometer,” Applied Optics, Vol.26, pp.37-40, 1987.
[29]. J. Chen, et al., “Heterodyne interferometer with a frequency-modulated laser diode,” Applied Optics, Vol.27, pp.124-128, 1988.
[30]. Y. Ishii, et al., “Phase-shifting fizeau interference microscope with a wavelength-tunable laser diode,” Optical Engineering, Vol.42, pp.60-67, 2003.
[31]. R. Onodera, et al., “Phase- shifting-locked interferometer with a wavelength-modulated laser diode,” Applied Optics, Vol.24, pp.91-96, 2003.
[32]. J. Y. Lee, et al., “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Applied Optics, Vol.51, pp.1095-1100, 2012.
[33]. C. M. Sutton, “Non-linearity in length measurement using heterodyne laser Michelson interferometry,” Journal of Physics E: Scientific Instruments, Vol.20, pp.1290-1292, 1987.
[34]. J. Lawal, et al., “Michelson interferometry with 10 pm accuracy,” Review of Scientific Instruments, Vol.71, pp.2669-2676, 2000.
[35]. D. Xiaoli, et al., “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Measurement Science and Technology, Vol. 9, pp. 1031-1035, 1998.
[36]. M. Nevivre, et al., “High-accuracy translation-rotation encoder with two gratings in a Littrow mount,” Applied Optics, Vol.38, pp.67-76, 1999.
[37]. J. Y. Lee, et al., “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensors and Actuators A: Physical, Vol.137, pp.185-191, 2007.
[38]. C. C. Hsu, et al., “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Optics Communications, Vol.281, pp.2582-2589, 2008.
[39]. J. Y. Lee, et al., “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Optics Communications, Vol.284, pp.857-862, 2011.
[40]. 雷射二極體(LD)與發光二極體(LED)的發光特性,http://www.phy.fju.edu.tw/files/archive/832_c4f0867b.pdf
[41]. 雷射二極體(ML520G54),http://www.frlaserco.com/download/20130419164238/ml5xx54.pdf
[42]. Y. Ishii, “Wavelength-Tunable Laser-Diode Interferometer,” Optical Review, Vol.6, pp.273-283, 1999.
[43]. F. L. Pedrotti and L. S. Pedrotti, Introduction to optics, Prentice Hall Inc., 1993.
[44]. 吳維庭,「準共光程外差光柵干涉術之研究」,國立中央大學,碩士論文,民國97年。
[45]. J. Y. Lee, et al., “Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement,” Applied Optics, Vol.50, pp.1272-1279, 2011.
[46]. Stanford Research System, Model SR850 DSP Lock-In Amplifier, 1992.
[47]. 林正淳,光學機構設計,林正淳,新竹縣,台灣,2008。
指導教授 李朱育(Ju-yi Lee) 審核日期 2013-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明