博碩士論文 100327022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.239.118.166
姓名 郭文淵(Wen-yuan Kuo)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 2D疊紋掃描系統
(2D scanning system by using moiré)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 全場相位式表面電漿共振技術★ 波長調制外差式光柵干涉儀之研究
★ 攝像模組之影像品質評價系統★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用
★ 光強差動式表面電漿共振感測術之研究★ 準共光程外差光柵干涉術之研究
★ 波長調制外差散斑干涉術之研究★ 全場相位式表面電漿共振生醫感測器
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 複合式長行程精密定位平台之研究
★ 紅外波段分光之全像集光器應用★ 太陽光譜分光器之設計
★ 波長調制旋光外差干涉術應用於表面電漿共振偵測★ 疊紋自動對焦技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套新的二維量測系統-「2D疊紋量測系統」,利用兩個線性光柵,配合光學系統以及待測物反射光的特性,得到其疊紋圖案。因其待測物位置的不同,得到的疊紋圖案也不同,因而藉由此現象,開發出一套2D疊紋量測系統。
疊紋現象是指兩個周期相近的光柵,所組成的低頻圖案。本論文研究方法如下:以一道準直雷射光通過第一道光柵,經由物鏡聚焦在待測物上,經由待測物反射後,回到其光學系統中,再通過第二道光柵形成疊紋。由於待測物位置不同,對焦、離焦、近焦三種位置,可產生不同的斜率的疊紋圖案。如此可藉由此現象,搭配疊紋判讀技術,以及兩個馬達的配合,逐步整個待測物,可得到其二維表面的三維圖。
根據實驗結果,其厚度的量測,在固定的物鏡情況下,光柵0.2mm時,工作距離內其靈敏度為約1.6(mm-1),而光柵0.3mm時,工作距離內其靈敏度為約1.1(mm-1)。其長度的量測中,馬達的步數越小,取的數值越多,可以得到更精確的數值,使用者可依據不同的需求,來選擇所需要的規格與參數。
本系統利用疊紋方法,藉由差動訊號,並配合馬達,做出二維表面起伏的三維圖。於2D缺陷與尺寸與3D形貌量測技術的領域上,將是一套具有相當潛力的量測系統。
摘要(英) In this paper, a new two-dimensional measurement system which we call the 2D scanning system by using moir? have been presented. It uses two linear gratings、optical system、and the reflected light from the sample to get the moir? pattern. The different moir? patterns come from the different distances of the sample. We use that characteristic to develop the 2D scanning system.
The moir? pattern refers to geometrical interference fringes, and is formed by two gratings that lie in contact, with small angle between two linear gratings. As a result, when a collimation laser goes through the first linear grating, it will be reflect by the sample. When it comes back to the optical system again, it will go through the second linear grating and become the moir? pattern. There are three kind of distance:focus、far focus、and near focus. They will decide the slope of moir? pattern. We use that characteristic to develop the moir? detect system. We combine the moir? detect system and two motors to scan the sample, and will get the three-dimensional pattern about two-dimensional surface.
We control the experimental environment in the same objective. According to the experimental data, the sensitivity is 1.6(mm-1) when the grating pitch is 0.2mm in the work distance; The sensitivity is 1.1(mm-1) when the grating pitch is 0.3mm in the work distance. The motor step distance is smaller, the experimental data will be more. We also can get more accurate datas. The users can decide the experimental specifications and parameters according to what you need.
This system combines the moir? effect, differential signal and the motors to make the three-dimensional pattern about two-dimensional surface pattern. This system has great potential in defects and size of 2D and 3D measurement technique.
關鍵字(中) ★ 疊紋
★ 差動訊號
★ 表面輪廓
關鍵字(英) ★ Moiré
★ differential signal
★ surface profile
論文目次 摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1研究背景 1
1.2 文獻回顧 2
1.2.1 二維輪廓量測文獻 2
1.2.2疊紋效應文獻回顧 5
1.3研究目的 9
1.4?文架構 10
第二章 基礎理論 11
2.1光線追跡理論 11
2.1.1矩陣光學 11
2.1.2折射矩陣 12
2.1.3傳播矩陣 13
2.2疊紋理論 14
2.2.1疊紋效應 14
2.2.2疊紋位移理論 17
2.2.3疊紋旋轉理論 18
2.3光柵投影成像大小引入疊紋變化 20
2.4小結 22
第三章 系統架構 23
3.1元件介紹 23
3.2 2D疊紋掃描系統 24
3.2.1物像關係 25
3.2.2疊紋系統 28
3.2.3繪圖系統 30
3.3疊紋掃描系統流程圖 30
3.4小結 31
第四章 實驗結果與討論 32
4.1實驗架構模擬以及設計 32
4.1.1建立架構 32
4.1.2優化設計 35
4.1.3導角 37
4.2一維數據 39
4.2.1光柵週期p=0.3離焦距離為0.5mm 39
4.2.2光柵週期 p=0.2離焦距離為0.5mm 40
4.3二維數據 41
4.3.1長方形 42
4.3.2六角形 43
4.3.3半月形 45
4.4實驗討論 47
4.4.1靈敏度 47
4.4.2解析度 48
4.4.3準確度 48
4.4.4消除導角 48
4.5小結 49
第五章 誤差分析 50
5.1入射光偏折誤差 50
5.2光柵相位誤差 53
5.3馬達穩定性 56
5.4小結 59
第六章 結論與未來展望 60
參考文獻 61
參考文獻 [1]. V. Scrinivasan et al, “Automated Phase Measuring Profilometry of 3-D Diffuse Objects, ”Applied Optics, Vol. 23, No.15, 1984.
[2]. H. Takasaki, “Moire Topography, ”Applied Optics, Vol. 9, No. 6,1970.
[3]. M.-C. Amann et al “Laser ranging: a critical review of usual techniques for distance measurement, ” Optics Engineering, Vol. 40(1), p.p. 10-19, 2001.
[4]. Jan A.N.Buytaert et al, “Phase-shifting Moire´ topography using optical demodulationon liquid crystal matrices Jan A.N.Buytaert” , Optics and Lasers in Engineering, Vol. 48, p.p. 172-181, 2010.
[5]. X. Xiao et al, “Displacement and Strain Measurement by Circular and Radial Gratings Moiré Method”, Society for Experimental Mechanics, 2009
[6]. V. Srinivasan et al, “Automated phase-measuring profilometry of 3-Ddiffuse objects, ” Applied Optics, Vol. 23, No. 18, 1984.
[7]. L. Rayleigh, “On the manufacture and theory of diffraction gratings,” Philosophical Magazine, Vol. 47, No. 311, pp.193-204, 1874.
[8]. V. Ronchi et al, Attualita Scintifiche,No.37. N.Zanidelli, Bologna, Chap.9, 1925.
[9]. C. V. Raman et al, Trans. Opt. Soc., Vol.27, p.p. 51, 1925-1926.
[10]. H. Takasaki, “Moiré Topography,” Applied Optics, Vol.9, No.6, pp.1467-1472, 1970.
[11]. R. P. Khetan, “Theory and Applications of Projection Moiré Method,” State University of New York at Stony Brook, Ph.D. Dissertation, 1975.
[12]. D. M. Meadows, “Generation of surface contours by moire patterns,”Applied Optics, Vol. 9, No. 4, pp.942-949, 1970.
[13]. J. Krasinski et al., “Phase object microscopy using moire deflectometry, ” Applied Optics, Vol. 24, No. 18, pp.3032-3036, 1985.
[14]. A. J. Durelli et al, “Moire Analysis of Strain, Prentice Hall, Englewood Cliffs,”New Jersey, 1970.
[15]. P. S. Theocaris, “Moire Fringe in Stress Analysis,” Pergamon, London, 1969.
[16]. . Krasinski et al., “Phase object microscopy using moire deflectometry,” Applied Optics, Vol. 24, No. 18, pp.3032-3036, 1985.
[17]. S. Rana et al., “Automated collimation testing in Lau interferometry using phase shifting technique”, Optics and Lasers in Engineering, Vol. 47, No. 6, pp.656-661, 2009.
[18]. R. D. Torroba et al, “Object positioning by a digital moiré focusing technique,” Optical Engineering, Vol. 38, No. 8, pp.1409-1412, 1999.
[19]. C. W. Chang and D. C. Su, “Collimation method that uses spiral gratings and talbot interferometry,” Optics Letters, Vol. 16, No. 22, pp.1783-1784, 1991.
[20]. R. Torroba et al, “Positioning method based on digital moiré,” Optics communications, Vol. 209, 2002
[21]. D. S. Mehta, “Two-wavelength Talbot effect and its application for three-dimensional step-heigh measurement,” Applied Optics, Vol. 45, No. 29,2006
[22]. S. Prakash, “ Setting semsitivity in collimation testing using Lau interferometry,” Pure and Appliend Optics, p.p. 290-294, 2006
[23]. 林佑儒,「疊紋自動對焦技術」,國立中央大學,碩士論文,2010
[24]. 賴律臻,「差動式疊紋自動對焦技術」,國立中央大學,碩士論文,2011
[25]. 楊婷婷,「利用微稜鏡陣列製作單眼立體攝影鏡頭之光學系統設計」,國立雲林科技大學,碩士論文,2007
指導教授 李朱育(Ju-yi Lee) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明