博碩士論文 100328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.190.156.80
姓名 曹祖偉(Zu-wei Tsao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 薄膜陣列結構微致冷器致冷特性數值模擬
(Numerical Simulation of the Characteristics of Thin Film Micro-Thermoelectric Cooler Arrays)
相關論文
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 常壓下熱電材料特性量測方法之模擬與分析
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 微致冷器之致冷特性數值模擬分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 多孔矽製備與熱傳特性量測之研究★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用聲子波茲曼方程式模擬非均質奈米多孔材料之熱傳性質★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於積體電路技術日漸突破,元件尺寸越做越小,但功率的需求則越來越大。這些高功率輸出同時造成積體電路內散熱的問題,而薄膜微型熱電致冷器即是解決此問題的一種可行方法。將熱電材料做成薄膜的主因,除了可以將尺寸縮小化,使熱電致冷器在微小尺度上的應用具有較佳的整合性,亦可以配合積體電路封裝散熱的需求。本文利用多重耦合數值模擬軟體模擬薄膜熱電致冷器,考量實際製程陣列結構的致冷特性,分別利用熱擴散方程式與電動力學連續方程式,並帶入熱電效應重要定義,藉此建立統御方程式。另外由於材料結構性質的影響,導致在材料介面接合處產生聲子與電子熱非平衡現象,本文利用波茲曼方程式(Boltzmann equation)探討聲子與電子在材料溫度分佈。
  本文首先主要探討單一摻雜型(Single type)熱電致冷器上電極設計對致冷溫度的影響,接著再探討以NiSi當PN模組(PN Module)薄膜熱電致冷器下電極時,觀察陣列結構的致冷特性。模擬結果發現,對Single type熱電致冷器致冷溫度較佳的電極寬度設計,其範圍會小於致冷器的致冷區域,且當電極的有效長度越長,對致冷溫度越不利。而以NiSi為PN Module薄膜微致冷器下電極進行陣列結構的模擬中,可以發現固定總致冷面積時,間隙介質熱傳導係數越高,對致冷器性能越不利。在聲子與電子熱非平衡模擬中,將熱電材料厚度縮小與增加電流時,會增加在材料介面處聲子與電子溫度不連續的區域,即所謂的非平衡區域(cooling length)。另外由於電子在介面處的邊界熱阻大於聲子的邊界熱阻,導致電子在介面溫度的變化範圍比聲子在介面溫度處的變化範圍來的大。上述本文的相關研究成果,可供未來設計微致冷器的參考依據。
摘要(英) With the rapid development of integrated circuit (IC) technology, the component size becomes smaller and smaller. Thermal management has become more and more important due to the requirement on high power output. Micro thermoelectric coolers (TE) provide a promising solution owing to the small size and high cooling power. The thin film TE cooler can not reduce its size for local hot spot cooling, but also have the capability of integration of IC fabrication.
In the study, we perform numerical study on the thin film micro-TE coolers with difference configurations. Single type and PN module type TE coolers are considered. The governing equation is derived from the heat diffusion equation and the continuity equation for electric charge, coupled with the thermoelectric relation. The phonon and electron thermal non-equilibrium at the metal/thermoelectric materials interface is also discussed by solving the Boltzmann equation.
First, we analyze cooling characteristics of the single type TE coolers different top contact geometry. Then we discuss TE cooler’s characteristics of thin film PN module arrays. The results shows that when the top contact width of a single type TE coolers is smaller than the width of the cooler, the better the cooling performance . The long effective length of the contact is found unfavorable to the cooling performance. In the PN module arrays, the thermal conductivity of the materials of array gaps can change the temperature. The higher cooling performance is obtained for lower themal conductivity of the gap media.
Finlly, we considered the cooling length, which is defined as the distance for electrons and phonon non equilibriu,. When the TE materials thickness decreases or the current passing through the TE materials increases, the cooling length increases. It is due to the larger electron boundary resistance than the phonon boundary resistance.
關鍵字(中) ★ 微致冷器
★ 數值模擬
★ 熱電材料
關鍵字(英) ★ Micro-thermoelectric
★ Numerical simulation
★ Thermoelectric material
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xv
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.3.1 Single type 熱電致冷器電極設計 5
1.3.2 PN Module熱電致冷器 6
1.3.3 材料微觀現象 11
1.4 論文架構 13
第二章 理論基礎 14
2.1 熱電效應 14
2.1.1 席貝克效應(Seebeck effect) 14
2.1.2 帕爾帖效應(Peltier effect) 15
2.1.3 湯姆森效應(Thomson effect) 16
2.1.4 凱爾文關係式(Kelivn relation) 17
2.2 熱電傳輸現象 18
2.2.1 電傳導理論 18
2.2.2 熱傳導理論 19
2.3 熱電優值 21
2.4 熱電材料 23
2.5 致冷功率理論 29
2.5.1 致冷功率理論 30
2.6 邊界效應理論 37
第三章 研究方法 41
3.1 數值方法 41
3.1.1 葛樂金法 41
3.1.2 有限元素分析法 42
3.2 數值模擬 44
3.2.1 熱電模擬統御方程式 45
3.2.2 邊界效應統御方程式 47
3.3 網格收斂 52
3.3.1 Single type熱電致冷器電極設計的網格收斂 53
3.3.2 文獻驗證PN Module陣列模擬的網格收斂 53
3.3.3 薄膜陣列結構熱電致冷器網格收斂 54
3.4 模擬設定 55
3.4.1 研究架構 55
3.4.2 熱電致冷器模擬參數及示意圖 56
第四章 結果與討論 60
4.1 Single type 熱電致冷器電極設計 60
4.1.1 下電極簡化 60
4.1.2 Single熱電致冷器上電極設計 63
4.2 同等面積 Single type 致冷器 及 PN Module致冷器差異 68
4.3 PN Module熱電致冷器性能討論 70
4.3.1 致冷功率理論計算驗證文獻 71
4.3.2 數值模擬驗證文獻結果 76
4.3.3 PN Module熱電致冷器下電極設計 79
4.3.4 模擬增加間隙介質結構的薄膜熱電致冷器 85
4.3.5 相同致冷面積不同PN Module薄膜熱電致冷器陣列設計 97
4.4 邊界效應探討 102
4.4.1 文獻驗證聲子與電子熱非平衡結果並將幾何尺寸縮小 104
4.4.2 邊界效應非平衡與平衡的溫度分佈比較 107
第五章 結論與未來展望 112
5.1 結論 112
5.2 未來展望 113
參考文獻 114
參考文獻 [1] ITRS, “International Technology Roadmap for Semiconductors 2012 update overview,” The International Technology Roadmap For Semiconductors, 2012
[2] G. J. Snyder, “ Hot Spot Cooling using Embedded Thermoelectric cooler,” 22nd IEEE SEMI-THERM Symposium, Research Triangle Park, USA, 2006
[3] X. Fan, “Silicon Microcoolers,” Univeristy Of California Santa Barbara, Ph.D. Disseration, 2002
[4] C. J. LaBountym, “Heterostructure Integrated Thermionic Cooling of Optoelectronic Devices,” Univeristy Of California Santa Barbara, Ph.D Dissertation, 2001
[5] D. Vashaee, Y. Zhang, A. Shakouri, G. Zeng, C. Labounty, X. Fan, E. Bowers, “MODELING AND OPTIMIZATION OF SINGLE-ELEMENT BULK SiGe THIN FILM COOLERS,” Micorscale Thermophysical Engineering, Vol. 9, pp. 99-118, 2006
[6] P. Wang, G.L. Solbrekken, A. Shakouri, “Analytical modeling of silicon thermoelectric microcooler,” Journal of Applied Physics, Vol. 100, 2006
[7] G. Min, D.M. Rowe, “Improved model for calculating the coefficient of performance of a Peltier module,” Energy Conversion & Management, Vol. 41, pp. 163-171, 2000
[8] M. Hodes, “On One-Dimesional Analysis of Thermoelectric Modules(TEMs),” IEEE Transcations on Components and Packaging Technologies, Vol. 28, pp. 218-229, 2005
[9] K. H. Lee, O.J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, Vol. 50, pp 1982-1992, 2007
[10] W. H. Chen, C.Y Liao, C.I. Hung, “A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect,” Appied Energy, Vol. 89, pp. 464-473, 2012
[11] M. Chen, G.J. Snyder, “Analytical and numerical parameter extraction for compact modeling of thermoelectric coolers,” International Journal of Heat and Mass Transfer, Vol. 60, pp. 689-699, 2013
[12] S. Orain, Y. Scudeller, S. Garcia, T. Brousse, “Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3973-3984, 2001
[13] L. W. da Silva, M. Kaviany, “Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 2417-2435, 2004
[14] G. S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, Springer, 2001
[15] J. D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology: Fundamentals, Pratice and Modeling, 1st ed., Prentice Hall, 2000
[16] D. M. Rowe, CRC Handbook of Thermoelectrics, 1st ed., CRC Press, 1995
[17] G. J. Snyder, E. Toberer, “Complex thermoelectric materials,” Nature materials, Vol. 7, pp. 105-114, 2008
[18] C. Kittel , Introduction to Solid State Physics, Wiley, 1986
[19] A. Shakouri “Nanoscale Thermal Transport and Microrefrigerators on a Chip,”, Proceedings of the IEEE, Vol. 94, pp. 1613-1638, 2006
[20] G. Chen, Nanoscale Energy Transport and Conversion, Oxford Unversity Press, 2005
[21] M. I. Flik and C. L. Tien, "Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors," Journal of Heat Transfer, vol. 112, pp. 872-881, 1990.
[22] M. Ohtaki, “Oxide Thermoelecric Materials for Heat-to-Electricity Direct Energy Conversion,” Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter, 2010
[23] T. M. Tritt, M.A. Subramanian, “Thermoelectric Materials, Phonomena, and Applications: A Birs’s Eye View,” MRS BULLETIN, Vol. 31, pp. 188-229, 2006
[24] A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physis and Materials,” Annual Reviews, Vol. 41, pp. 399-431, 2011
[25] S. Huxtable, A.R. Abramson, A. Majumdar, A. Shakouri, “The effect of defects and Acooustic impedance mismatch on heat conduction sige based superlattices,” 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002
[26] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine (Eds.), Fundamentals of heat and mass transfer, 6th ed., John Wiley & Sons Incorporated , Asia, 2007.
[27] X. Fax, E. Croke, C.C. Ahn, S. Huxtable, A. Shakouri, “SiGeC/Si superlattice microcoolers,” Applied Physics Letters, Vol. 78, pp. 1580-1582, 2001
[28] M. Bartkowiak, G.D. Mahan, “Heat and electricity transport through interfaces,” Semiconductors and semimetals, Vol. 70. pp. 245-271, 2001
[29] M. Jaegle, “Muliphysics Simulation of Thermoelectric Systems – Modeling of Peltier Cooling and Thermoelectric Generation,” COMSOL Conference, Germany, 2008
[30] L. D. Landau, E.M. Lifshitz, Electrodynamics of Continous Media, 2nd Edition, Butterworth-Heinemann, 1984
[31] S. W. Han, J.Y. Kim, H.W. Lee, K.H. Lee, O.J. Kim, “Multi-physics analysis for the design and development of micro-thermoelectric coolers,” ICCA, KINTEX, Gyeonggi-Do, Korea, 2005
[32] Y. Zhang, D. Vashaee, J. Christofferson, A. Shakouri, “3D Electrothermal Simulation of Heterstructure Thin Film Micro-coolers,” ASME Conference Proceedings., Vol. 2, pp. 39-48, Washington, USA, 2003
[33] J. H. Park, S. M. Kang, Y. Zhang, K. Fukutani, A. Shakouri, “Three-Dimensional Electron-Thermal Modeling of Thin Film Micro-Refrigerators for Site-Specific Cooling of VLSI ICs,” 39th International Symposium on Microelectronics, San Diego, USA, 2006
指導教授 洪銘聰(Ming-tsung Hung) 審核日期 2013-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明