博碩士論文 100328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.227.249.234
姓名 薛聿芮(Yu-Jui Hsueh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究
(Pt-Sn/OPC Cathode Catalyst for Oxygen Reduction Reaction in PEMFC)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 提升觸媒利用率與效能是質子交換膜燃料電池的重要課題。目前燃料電池觸媒擔體多使用碳黑,但因可能形成孤島效應,導致觸媒利用率降低。若能製備規則多孔碳材為載體,有機會改善此一缺點。多孔碳具有高比表面積、高孔隙率與機械穩定性,適合作為燃料電池電極觸媒載體,其多孔結構能有效地區隔觸媒顆粒,避免觸媒聚集。
本研究主要以製作連續且規則性結構多孔碳作為陰極觸媒載體應用於燃料電池,提高觸媒利用率及加強電子傳遞。由於Pt-M/C合金觸媒的活性比純Pt/C觸媒高,利用摻雜技術製備Pt-M/C合金觸媒代替現有傳統純Pt/C觸媒來增加ORR活性,考量酸性操作環境,選擇Sn作為Pt-Sn/C合金觸媒材料,藉以降低鉑使用量,達到燃料電池生產成本降低之目標。
從實驗中發現,使用醇類還原法製備Pt-Sn/OPC觸媒,其觸媒分散性良好,粒徑維持在2.6 nm,且具有高比表面積與多孔結構的多孔碳能降低觸媒粒徑及抑制觸媒聚集現象。從XRD可知,Pt-Sn/OPC之Pt (111)晶面繞射峰為39.3o較Pt/C之Pt (111)晶面繞射峰為39.8o往低角度位移,此現象表示Sn原子摻雜成功,產生Pt-Sn合金相。經由電化學分析與長時間穩定性測試,Pt-Sn/OPC觸媒之活性均高於傳統純Pt/C觸媒。Pt-Sn/OPC觸媒具有良好的性能,有望成為PEMFC 陰極觸媒的替代材料。
摘要(英) How to increase catalyst utilization and activity are very important in PEMFC. Carbon black is widely used today as the catalyst support. Although current practice of using carbon black to support catalyst can enhance catalyst dispersion and catalytic activity, it suffers from loss of catalytic use due to occasional island formation. This can be prevented by using continuous catalyst support. Ordered porous carbon (OPC) is used as the catalyst support for fuel cell application due to its large surface area and continuous structure.
We will prepare continuous and ordered structure of porous carbon as catalyst support for PEMFC to improve the catalyst utilization and enhance electron transfer. Pt-M alloy catalysts have higher activity than pure Pt catalysts. The noble metal, Sn, is a promising candidate to replace Pt not only reduces cost by lowering Pt loading but also increases ORR activity in acidic environment of fuel cell.
Results show that PtSn/OPC as prepared has well dispersed PtSn nano particles, with an average particle size around 2.6 nm. Compared XRD patterns with pure Pt’s, the reflection peak associated with the Pt(111) of PtSn samples is slightly shifted from 39.8° to about 39.3°, indicating the formation of a solid solution involving the incorporation of Sn atoms into the lattice of Pt. The electrochemically active surface area of PtSn/OPC samples is found to be higher than that of Pt/C. During long-term stability, due to the confining effects of mesopores of OPC on Pt-Sn particles, the Pt-Sn/OPC catalyst exhibits better long-term durability than Pt/C. Therefore, the Pt-Sn/OPC catalyst is promising as a durable and robust cathode catalyst for PEMFCs.
關鍵字(中) ★ 多孔碳
★ 觸媒載體
★ 鉑錫合金
★ 質子交換膜燃料電池
★ 氧化還原反應
關鍵字(英) ★ Ordered porous carbon
★ Catalyst support
★ Pt-Sn alloy
★ PEMFC
★ Oxygen reduction reaction
論文目次 目錄
摘要 I
Abstract III
謝誌 V
目錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 燃料電池簡介 3
1.2.1 液態電解質燃料電池 3
1.2.2 固態電解質燃料電池 4
1.3 質子交換膜燃料電池 5
1.3.1 基本構造及原理 5
1.3.2 極化現象 6
1.4 質子交換膜燃料電池之觸媒層 8
1.4.1 陽極觸媒 9
1.4.2 陰極觸媒 9
1.5 當前遭遇問題 10
1.6 研究目的 11
第二章 文獻回顧 12
2.1 多孔碳於燃料電池之應用 12
2.2 多孔碳製作 14
2.2.1 模板法 14
2.2.2 矽微粒 15
2.2.3 溶膠凝膠法 15
2.2.4 碳前驅物及碳化 17
2.2.5 石墨化 19
2.3 觸媒製作 21
2.3.1 醇類還原法 21
2.3.2 Pt-Sn觸媒 22
第三章 實驗方法與步驟 24
3.1 實驗架構與實驗藥品 24
3.2 多孔碳製作 26
3.2.1 模板製備 26
3.2.2 填料及碳化 26
3.2.3 模板移除 27
3.2.4 高溫石墨化 27
3.3 觸媒合成 27
3.3.1 Pt觸媒 27
3.3.2 Pt-Sn雙元合金觸媒 28
3.4 儀器分析 29
3.4.1 掃描式電子顯微鏡 29
3.4.2 熱重差熱分析儀 30
3.4.3 拉曼光譜 31
3.4.4 X光粉末繞射儀 32
3.4.5 穿透式電子顯微鏡 33
3.4.6 X光光電子能譜儀 34
3.4.7 觸媒電性測試 35
第四章 結果與討論 39
4.1 多孔碳的製備及結果 39
4.1.1 矽微粒之孔徑影響 39
4.1.2 多孔碳結構 40
4.1.3 高溫石墨化 41
4.2 觸媒還原於多孔碳之特性分析 54
4.2.1 Pt/OPC 54
4.2.2 Pt-Sn/OPC 55
4.3 觸媒還原於多孔碳之性能表現 65
4.3.1 CV分析結果 65
4.3.2 LSV分析結果 66
第五章 結論及未來方向 71
5.1. 結論 71
5.2. 未來方向及建議 72
參考文獻 73
參考文獻 [1] S.K. Lo, C.J. Tseng, L.D. Tsai, J.N. Lin. “Fractal permeability models for the micro porous layer and gas diffusion layer of PEM fuel cell.” Journal of the Chinese Institute of Engineers, Vol. 34, pp.39-47, 2011
[2] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang, S.K. Lo. “A PEM fuel cell with metal foam as flow distributor.” Energy Convers Manage, Vol. 62, pp.14-21, 2012
[3] http://ieknet.iek.org.tw/
[4] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2005
[5] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang, S.K. Lo. “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor.” International Journal of Hydrogen Energy, Vol. 37, pp.13060-13066, 2012
[6] http://www.osakagas.co.jp/index.html
[7] EG&G Technical Services, Inc. Fuel Cell Handbook, 7th Ed. US Department of Energy, Morgantown, West Virginia, 2004
[8] M. Kaviany. “Principle of Heat Transfer in Porous, 2nd Ed.” Media, Springer, New York, 1995
[9] T. Toda, H. Igarashi, H. Uchida, M. Watanabe. “Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co.” Journal of The Electrochemical Society, Vol. 146, pp.3750-3756, 1999
[10] C.J. Tseng, S.T. Lo, S.C. Lo, P.P. Chu. “Characterization of Pt-Cu binary catalysts for oxygen reduction.” Materials Chemistry and Physics, Vol. 100, pp.385-390, 2006
[11] E. Antolini. “Formation of carbon-supported PtM alloys for low temperature fuel cells: a review.” Materials Chemistry and Physics, Vol. 78, pp.563-573, 2003
[12] E. Antolini. “Carbon supports for low-temperature fuel cell catalysts.” Applied Catalysis B: Environmental, Vol. 88, pp.1-24, 2009
[13] G. Wang, G. Sun, Q. Wang, S. Wang, H. Sun, Q. Xin. “Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance.” International Journal of Hydrogen Energy, Vol. 35, pp.11245-11253, 2010
[14] Y.H. Cho, N. Jung, Y.S. Kang, D.Y. Chung, J.W. Lim, H. Choe et al. “Improved mass transfer using a pore former in cathode catalyst layer in the direct methanol fuel cell.” International Journal of Hydrogen Energy, Vol. 37, pp.11969-11974, 2012
[15] D. Ashley, S.M. Moore, P.L.R. Edward. “Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells.” RSC Advances, Vol. 2, pp. 669-1674, 2012
[16] J.S. Yu, S. Kang, S.B. Yoon, G. Chai. “Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter.” Journal of the American Chemical Society, Vol. 124, pp.9382-9383, 2002
[17] J.B. Joo, P. Kim, W. Kim, J. Kim, J. Yi. “Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells.” Catalysis Today, Vol. 111, pp.171-175, 2006
[18] E.P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi, P. Spinelli. “Platinum catalyst supported on mesoporous carbon for PEMFC.” International Journal of Hydrogen Energy, Vol. 33, pp.3142-3145, 2008
[19] S.H. Liu, W.Y. Yu, C.H. Chen, A.Y. Lo, B.J. Hwang, S.H. Chien, S.B. Liu. “Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell.” Chemistry Materials, Vol. 20,pp.1622-1628, 2008
[20] X.S. Zhao, S. Su, Q. Yan, W. Guo, X.Y. Bao, L. Lv, Z. Zhou. “Templating methods for preparation of porous structures.” Journal of Materials Chemistry, Vol. 16, pp.637-648, 2006
[21] A. Manzke, C. Pfahler, O. Dubbers, A. Plettl, P. Ziemann, D. Crespy, E. Schreiber, U. Ziener, K. Landfester. “Etching masks based on miniemulsions: A novel route towards ordered arrays of surface nanostructures.” Advanced Materials, Vol. 19, pp.1337-1341, 2007
[22] T. Yanagishita, K. Nishio, H. Msuda. “Fabrication of metal nanohole arrays with high aspect ratios using two-step replication of anodic porous alumina.” Advanced Materials, Vol. 17, pp.2241-2243, 2005
[23] J. Lee, S. Hana, T. Hyeon. “Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates.” Journal of Materials Chemistry, Vol. 14, pp.478-486, 2004
[24] W. Stöber, A. Fink, E. Bohn. “Controlled growth of monodispersed silica spheres in the micron size range.” Journal of Colloid and Interface Science, Vol. 26, pp.62-69, 1968
[25] K. S. Rao, K. E. Hami, T. Kodaki, K. Matsushige, K. Makino. “A novel method for synthesis of silica nanoparticles.” Journal of Colloid and Interface Science, Vol. 289, pp.125-131, 2005
[26] http://en.wikipedia.org/wiki/Sol-gel
[27] D. B. Akolekar, A. R. Hind, S. K. Bhargava. “Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution.” Journal of colloide and interface science, Vol.199, pp.92-98, 1998
[28] L. H. Kao, T. C. Hsu. “Silica template synthesis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution.” Materials Letters, Vol.62, pp.695-698, 2008
[29] Z. Zhou, Q. Yan, F. Su, X. S. Hao. “Replicating novel carbon nanostructures with 3D macroporous silica template.” Journal of Materials Chemistry, Vol.15, pp.2569-2574, 2005
[30] J. S. Yu, S. B. Yoon, G. S. Chai. “Ordered uniform porous carbon by carbonization of sugars.” Carbon, Vol.39, pp.1421-1446, 2001
[31] S. W. Woo, K. Dokko, K. Sasajima, T. Takeia, K. Kanamura. “Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres.”Chemical communications, Vol.39, pp.4099-4101, 2006
[32] S. Kang, J. S. Yu, M. Kruk, M. Jaroniec. “Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties.” Chemical communications, Vol.16, pp.1670-1671, 2002
[33] T. H. Ko and P. C. Chen. “Study of the pyrolysis of phenolic resin reinforced with two-dimensional plain woven carbon fabric-I.” Journal of materials science Letters, Vol. 10, pp.301-303, 1991
[34] Z. Lausevic and S. Marinkovic. “Mechanical properties and chemistry of carbonization of Phenol formaldehyde resin.” Carbon, Vol. 4, pp.575-580, 1986
[35] Y. Yamashita, K. Kawamura. “Polymer Carbons-Carbon fiber Glass and char.” Syndic of the Cambridge University press, London, 1976.
[36] R.E. Franklin. “Crystallite growth in graphitizing and nongraphitizing carbons.” Proceedings of the Royal Society A, Vol. 209, pp.196-218, 1951
[37] F. Tuistra, J.L. Koeing. “Characterization of Graphite Fiber Surfaces with Raman Spectroscopy.” Journal of Composite Materials, Vol. 4, pp.492-499, 1970
[38] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio, M.A. Pimenta. “Measuring the degree of stacking order in graphite by Raman spectroscopy.” Carbon, Vol. 46, pp.272-275, 2008
[39] B.C. Satishkumar, E.M. Vogl, A. Govindaraj, C.N.R. Rao. “The decoration of carbon nanotubes by metal nanoparticles.” Journal of Physics D: Applied Physics, Vol. 29, pp.3173-3176, 1996
[40] V. Lordi, N. Yao, J. Wei. “Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst.” Chemistry of Materials, Vol. 13, pp.733-737, 2001
[41] Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin. “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell.” Chemical Communications, Vol. 3, pp.394-395, 2003
[42] H.S. Liu, C.J. Sona, L. Zhana, J.J. Zhan, H.J. Wang, D. P. Wilkinson. “A review of anode catalysis in the direct methanol fuel cell.” Journal of Power Sources, Vol.155, pp.95-110, 2006
[43] T. Matsui, T. Okanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi, T. Takeguchi, K. Eguchi. “Effect of reduction–oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts.“ Science and Technology of Advanced Materials, Vol. 7, pp.524-530, 2006
[44] Y. Shao, G. Yin, Y. Gao. “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell.” Journal of Power Sources, Vol. 171, pp.558-566, 2007
[45] M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.I. Ota. “Effect of tin oxides on oxide formation and reduction of platinum particles.” Electrochemical and Solid-State Letters, Vol. 10, pp.1-4, 2007
[46] J.H. Kim, S.M. Choi, S.H. Nam, M.H. Seo, S.H. Choi, W.B. Kim.“Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: Synthesis, characterization, and electrocatalytic activity.” Applied Catalysis B: Environmental, Vol. 82, pp.89-102, 2008
[47] Y.J. Hsueh, C.C. Yu, K.R. Lee, C.J. Tseng, B.J. Su, S.K. Wu, L.C. Weng. “Ordered porous carbon as the catalyst support for proton-exchange membrane fuel cells.” International Journal of Hydrogen Energy, Vol. 38, pp.10998-11003, 2013
[48] B.J. Su, K.W. Wang, C.J. Tseng, C.H. Wang, Y.J. Hsueh.“Synthesis and catalytic property of PtSn/C toward the ethanol oxidation reaction.” International Journal of Electrochemical Science, Vol. 7, pp.5246-5255, 2012.
[49] Y. Garsany, O.A. Baturina and K.E. Swider-Lyons, S.S. Kocha. “Experimental methods for quantifying the qctivity of platinum electrocatalysts for the oxygen reduction reaction.” Analytical Chemistry, Vol.82, pp.6321-6328, 2010
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2013-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明