博碩士論文 100328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.97.9.168
姓名 謝易達(Yi-Da Shie)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析
(Measurements and Analyses of Anode-Supported and Electrolyte-Supported Single-Cell Stacks for Pressurized SOFCs)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)★ 實驗研究密度比效應對紊流火焰速率之影響
★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用已建立之雙腔體高壓固態氧化物燃料電池(SOFC)性能測試平台,自行組裝單電池堆(即全電池加上流道板),分別針對陽極支撐與電解質支撐單電池堆,進行其電池性能與電化學阻抗頻譜的量測。實驗條件為固定500 sccm氫氣與400 sccm氮氣之混和氣體為陽極燃料和900 sccm空氣做為陰極氧化劑;為了探討加壓和溫度效應,我們控制不同系統操作壓力範圍(p = 1 atm ~ 5 atm)和溫度範圍(T = 700℃ ~ 850℃),主要研究目的為探討比較兩不同支撐全電池之優劣和異同。實驗結果顯示,陽極支撐與電解質支撐單電池堆其性能皆會隨壓力與溫度增加而有所提升。例如,在T = 850 ℃與操作電壓0.7 V之條件下,陽極支撐/電解質支撐單電池堆在p = 1 atm之功率密度分別為PD = 309 / 193 mW cm-2;當p增加到3 atm時,其PD值可較迅速地增加到422 / 228 mW cm-2;而當p = 5 atm,PD值僅增加到476 / 250 mW cm-2,顯示加壓效應在1 ~ 3大氣壓時,對電池性能之影響最為顯著,其影響會隨壓力大於3大氣壓後逐漸遞減。前述提昇電池性能之實驗結果,可由電化學阻抗頻譜(EIS)量測來加以解釋和證實。
我們進一步以等效電路模組對所量測之電化學阻抗頻譜進行分析,主要結果如下歐姆極化阻抗與加壓效應無關,其僅會隨溫度增加而下降;而活化極化阻抗與濃度極化阻抗則皆會隨壓力與溫度增加而減少,此結果適用於兩不同支撐之單電池堆。經比較後,加壓效應對陽極支撐單電池堆之性能提昇比對電解質支撐單電池堆來得明顯有效,而後者對溫度效應之反應遠比前者來的敏感。整體而言,溫度效應比壓力效應對提昇電池性能來的顯著,因其可有效降低歐姆極化阻抗。本研究成果應對發展高壓SOFC與微氣渦輪機結合之複合式發電系統有重要之助益。
摘要(英) This study applies a recently-established high-pressure double-chamber solid oxide fuel cell (SOFC) testing platform together with the self-assembled single cell stacks (a full cell with flow distributors in both anode and cathode), so that cell performance and electrochemical impedance spectroscopy (EIS) of both anode-supported and electrolyte-supported SOFCs can be measured. Fixed flow rates are used for all experiments, 500 sccm hydrogen and 400 sccm nitrogen for the anode and 900 sccm air for the cathode. To investigate effects of system pressure (p) and temperature (T), five different p varying from 1 atm to 5 atm and four different T varying from 700℃ to 800℃ are independently controlled and varied. The major objective is to compare advantages/disadvantages and similarities/differences between anode-supported and electrolyte-supported SOFC single stacks. Results show that cell performances of both anode-supported and electrolyte-supported SOFC singlel stacks increase with increasing p and T. For example, when T = 850℃ at 0.7 V, the power densities (PD) of anode-supported/electrolyte-supported single-cell stacks are respectively 309/193 mW cm-2 at p = 1 atm, values of PD modestly increase to 422/228 mW cm-2 rather quickly as p increases at 3 atm, and values of PD can only increase modestly to 476/250 mW cm-2 at p = 5 atm. These results reveal that pressurization for the increase of PD is most significant from 1 atm to 3 atm and such enhancement becomes more gradually when p > 3 atm. Furthermore, the aforesaid that cell performance results are to be explained by EIS measurements.
We use equivalent an circuit model to analyze EIS data. It is found that the ohmic polarization resistance is independent of p, but it decreases with increasing T. Moreover, both of activation and concentration polarization resistances decrease with increasing T and/or p. Such resistance results due to effects of increasing p and T are similar for both anode-supported and electrolyte-supported single-cell stacks. When compared, it is also found that the increase of PD due to pressurization is more significant in the anode-supported single-cell stack than in the electrolyte-supported SOFC single-cell stack. However, the latter is more sensitive to the temperature effect as compared to the former. Generally speaking, the temperature effect is more effective than the pressurization effect in terms of the increase of cell performance. This is because increasing T can effectively decrease the ohmic polarization resistance. The present study is important, because it is the first step toward the development of pressurized SOFCs combined with micro gas turbines for future power generation.
關鍵字(中) ★ 加壓SOFC
★ 陽極支撐和電解質支撐單電池堆
★ 電池性能
★ 電化學阻抗頻譜
★ 歐姆和極化阻抗
關鍵字(英) ★ pressurized SOFC
★ anode-supported and electrolyte-supported single-cell stacks
★ cell performance
★ electrochemical impedance spectra
★ Ohmic and polarization resistances
論文目次 目錄
摘要 i
Abstract iii
致謝 iv
目錄 v
圖表目錄 vii
符號說明 x
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 4
1.4 論文綱要 4
第二章 文獻回顧 6
2.1 SOFC基本元件 6
2.2 SOFC基本原理 6
2.3 電化學阻抗頻譜於SOFC系統之應用 8
2.4 加壓型SOFC之研究 10
第三章 實驗設備與量測方法 21
3.1高壓單電池堆性能測試平台 21
3.2 實驗流程與量測操作參數設定 24
第四章 結果與討論 31
4.1 加壓於不同操作溫度對性能特性曲線之影響 31
4.1.1 溫度與壓力效應對開迴路電壓之影響 31
4.1.2溫度與壓力效應對性能特性曲線之影響 32
4.1.3 溫度與壓力效應對電池性能之影響 33
4.2加壓效應於不同操作溫度對阻抗頻譜之影響 35
4.2.1 溫度與壓力效應對阻抗頻譜之影響 35
4.2.2 溫度與壓力效應電化學阻抗頻譜於等效電路之分析 36
4.3 陽極支撐與電解質支撐結構於溫度與壓力效應之影響 37
4.3.1 陽極支撐與電解質支撐結構於性能特性曲線之比較 37
4.3.2 陽極支撐與電解質支撐結構於阻抗頻譜之比較 37
第五章 結論與未來工作 68
5.1 結論 68
5.2 未來工作 69
參考文獻 70
附錄 73
參考文獻 [1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] Sammes, N. M., Du, Y., Bove, R., “Design and fabrication of a 100 W anode supported micro-tubular SOFC stack”, Journal of Power Sources 145 (2005) 428-434.
[3] 方良吉等編著,2010年能源產業技術白皮書,第一版,經濟部能源局,台北市,民國九十九年。
[4] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo and K. A. Friedrich, “Effect of pressure variation on power density and efficiency of solid oxide fuel cells”, Electrochimica Acta 66 (2012) 158-163.
[5] T.-H. Lim, R.-H. Song, D.-R. Shin, J.-I. Yang, H. Jung, I. C. Vinke and S.-S. Yang, “Operating characteristics of a 5kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system”, International Journal of Hydrogen Energy 33 (2008) 1076-1083.
[6] L. Zhou, M. Cheng, B. Yi, Y. Dong, Y. Cong and W. Yang, “Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions”, Electrochimica Acta 53 (2008) 5195-5198
[7] L. A. Chick, O. A. Marina, C. A. Coyle and E. C. Thomsen, “Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene”, Journal of Power Sources (2012) 1-9.
[8] S. Seidler, M. Henke, J. Kallo, W. G. Bessler, U. Maier and K. A. Friedrich, “Pressurized solid oxide fuel cells: Experimental studies and modeling”, Journal of Power Sources 196 (2011) 7195-7202
[9] Ni, M., Leung, M.K.H., Leung, D.Y.C., Parametric study of solid oxide fuel cell performance, Energy Conv. Manag., Vol. 48, pp. 1525-1535, 2007.
[10] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurisation on SOFC performance and durability : A theoretical study, Fuel Cells 11 (2011) 581-591.
[11] S. H. Jensen, X. Sun, S. D. Ebbesen, R. Knibbe and M. Mogensen, “Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells”, International Journal of Hydrogen Energy 35 (2010) 9544-9549.
[12] C. M. Huang, S. S. Shy, H. H. Li and C. H. Lee, “The impact of flow distributors on the performance of planar solid oxide fuel cell”, Journal of Power Sources 195 (2010) 6280-6286.
[13] S. S. Shy, C. M. Huang, H. H. Li and C. H. Lee, “The impact of flow distributors on the performance of solid oxide fuel cell—Part II: Electrochemical impedance measurements”, Journal of Power Sources 196 (2011) 7555-7563.
[14] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析: 壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[15] B. de Boer, M. Gonzalez, H. J. M. Bouwmeester and H. Verweij, “The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes”, Solid State Ionics 127 (2000) 269-276.
[16] M. Mogensen, K. V. Jensen, M. J. Jørgensen and S. Primdahl, “Progress in understanding SOFC electrodes”, Solid State Ionics 150 (2002) 123-129.
[17] Y. Patcharavorachot, A. Arpornwichanop and A. Chuachuensuk, “Electrochemical study of a planar solid oxide fuel cell: Role of support structures”, Journal of Power Sources 177 (2008) 254-261.
[18] Robert J. Kee, Anthony M. Dean, Mark T. Lusk, “Fundamental physics and chemistry of direct electrochemical oxidation in SOFC”, Solid State Energy Conversion Alliance, Asilomar, 2005.
[19] Vielstich, W., Lamm, A. & Gasteiger, H. A. Handbook of Fuel Cells: Fundamentals Technology and Applications, 1st Edition, John Wiely & Sons, Ltd, England, 2003.
[20] Larminie, L. & Dicks, A. Fuel cell systems explained, 2nd Edition, John Wiely & Sons. Ltd., England, 2003.
[21] Q.-A. Huang, R. Hui, B. Wang and J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta 52 (2007) 8144-8164.
[22] Jorcin, J.B., Orazem, M.E., Pébére, N. and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[23] Leonide, A., Sonn, V., Weber, A. and Ivers-Tiffée, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[24] Veyo, S.E., Shocking, L.A., Dederer, J.T., Gillett, J.E. and Jundberg, E.L., “Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems:Status”, ASME J. Engineering for Gas Turbines and Power 124 (2002) 845-849.
[25] Campanari, S., Full Load and Part-Load Performance Prediction for Intrated SOFC and Microtubine System, ASME J. Engineering for Gas Turbines and Power 122 (2000) 239-246.
[26] Kikuchi, R., Yano, T., Takeguchi, T., Eguchi, K., Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics 174 (2004) 111-117.
[27] S. Hashimoto, H. Nishino, Y. Liu, K. Asano, M. Mori, Y. Funahashi and Y. Fujishiro, “Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte”, J. Electrochem. Soc. 155 (2008) B587-591
[28] Hashimoto, S., Liu, Y., Asano, K., Yoshiba, F., Mori, M., Funahashi, Y., Fujishiro, Y., Power Generation Properties of Microtubular Solid Oxide Fuel Cell Bundle Under Pressurized Condition, J. Fuel Cell Sci. Technol.,5 (2011) 021010.
[29] Bo, C., Yuan, C. Zhao, X., Wu, C.B., Li, M.Q., Parametric analysis of solid oxide fuel cell, Clean Techn. Environ. Policy, Vol. 11, pp. 391-399, 2009.
[30] Virkar, A.V., Fung, K.Z., Singhal, S.C., The effect of pressure on solid oxide fuel cell performance, Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, 1997.
[31] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011。
[32] V.A.C. Haanappel, M.J. Smith, “A review of standaedising SOFC measurement and quality assurance at FZJ”, Journal of Power Sources 171 (2007) 169-178
[33] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed, “characterization of anode-supported SOFCs by impedance spectroscopy”, J. Electrochem.154 (2007) B371-B378, 2007.
指導教授 施聖洋 審核日期 2013-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明