博碩士論文 100328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.3.154
姓名 張善淵(Shan-yuan Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
(Surface passivation layer of α-Si:H thin films from process parameters study in HIT solar cell was prepared by ECR-CVD)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數,調變的參數為微波功率、壓力、磁場共振位置、溫度及氫稀釋濃度比。製程過程中輔以光放射光譜儀(OES)監測電漿物種變化,並搭配FTIR、拉曼光譜儀、橢圓偏光儀來探討薄膜的結構特性,最後以Photoconductance lifetime tester判斷鈍化效益的好壞。
經由實驗可得,考慮到電子密度及電子溫度的影響因此製程壓力選用5mtorr最為恰當;至於功率可選用低功率500W;溫度方面,製程溫度以300℃為佳;綜合以上參數,可於磁場組態40/12/22、氫稀釋比0.2、厚度20nm下獲得品質穩定的非晶矽鈍化薄膜。經過退火270 ˚C-120s後數載子生命週(Lifetime)從523.79μsec提升至1.18msec;Implied Voc從626.48mV提升至657.48mV;R*從0.2下降到0.18;氫含量32.7%降至31.6%。
摘要(英) Surface passivation layer of hydrogenated amorphous silicon thin films (α-Si:H) in heterojunction with intrinsic thin layer (HIT) solar cell was prepared by Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD). The process parameters effects on films of surface passivation were investigated. In this study, the Optical Emission Spectroscopy (OES) has been used as a tool for analyzing the plasma spectrum and tried to find out the relationship to the deposition properties under varying process settings such as microwave power, pressure, magnetic field resonance position, temperature, and dilution ratio. The thin film properties were analyzed by Fourier transform infrared spectroscopy, Raman spectroscopy, and Ellipsometry. The surface passivation quality was determined by photo-conductance lifetime tester.
The result showed that the stable and high quality of passivated amorphous silicon thin films could be obtained under the parameters of including thickness of 20nm, dilution ratio of 0.2, microwave power of 500W, substrate temperature of 300℃, pressure of 5mTorr and magnetic field configuration are of 40A, 12A and 22A which represents main coil, inner coil and outer coil current respectively.
The thin film properties could be optimized after annealing process under the temperature 270 ˚C for 120sec. The lifetime of passivated amorphous silicon thin films increased from 523.79μsec to 1.18msec, the implied Voc increased from 626.48mV to 657.48mV, the microstructure parameter (R*) decreased from 0.2 to 0.18, and the hydrogen content (CH) decreased from 32.7% to 31.6%.
關鍵字(中) ★ 氫化非晶矽
★ 表面鈍化
★ 光放射光譜儀
★ 電子迴旋共振
★ 化學氣相沉積
★ 載子生命週期
關鍵字(英) ★ hydrogenated amorphous silicon
★ surface passivation
★ Optical Emission Spectroscopy(OES)
★ Electron Cyclotron Resonance(ECR)
★ Chemical Vapor Deposition(CVD)
★ carrier lifetime
論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 研究目的及方法 5
第二章 文獻整理及原理介紹 8
2-1太陽電池簡介 8
2-2矽晶片復合機制與光導量測之介紹 12
2-2-1輻射復合 (RADIATIVE RECOMBINATION) 13
2.2-2 歐傑復合 (AUGER RECOMBINATION) 14
2.2-3 夏克禮-里德-霍 (SHOCKLEY-READ-HALL)復合 16
2.2-4 表面復合 (SURFACE RECOMBINATION) 17
2.2-5 光導量測之介紹 17
2-3 薄膜沉積 20
2-3-1 薄膜沉積原理 20
2-3-2 化學氣相沉積 (CVD) 23
2-4 矽薄膜介紹 29
2-5 應用於單晶矽太陽能電池之矽晶圓上的表面鈍化 33
2-6 光放射光譜儀用於矽薄膜製程之研究 38
第三章 實驗方法與設備 41
3-1 實驗方法 41
3-2 實驗步驟 42
3-3 實驗設備及原理 43
3-3-1 電子迴旋共振氣相沉積系統(ELECTRON CYCLOTRON RESONANCE CHEMICAL VAPOR DEPOSITION , ECR-CVD) 43
3-3-2 光放射光譜儀OES 46
3-3-3 傅氏轉換紅外線光譜儀FTIR 49
3-3-4 橢圓偏光儀 (ELLIPOSMETER) 51
3-3-5 拉曼光譜儀(RAMAN SPECTROSCOPY) 52
3-3-6快速退火爐(ARTS-RTA) 53
3-3-7光電導生命週期量測儀(PHOTOCONDUCTANCE LIFETIME TESTER) 54
第四章 結果與討論 57
4-1微波功率對電漿與薄膜特性之影響 57
4-2工作壓力對電漿與薄膜特性之影響 65
4-3 磁場共振位置對電漿與薄膜特性之影響 73
4-4 溫度對電漿與薄膜特性之影響 79
4-5 氫稀釋濃度對電漿與薄膜特性之影響 84
4-6 熱退火處理對非晶矽薄膜特性之影響 91
第五章 結論 98
參考文獻 101

表目錄
表1-1 ECR與RF電漿源之差異 7
表2-1 SIH4初級反應式 23
表2-2 SIH4反應式[25] 25
表2-3 製作之A-SIH薄膜所具備各項數值特性 32
表3-1 矽氫鍵結對照表 50
表4-1 不同功率之參數設定 60
表4-2 不同工作壓力之參數設定 68
表4-3不同共振位置之參數設定 74
表4-4 不同溫度之參數設定 80
表4-5 不同氫稀釋濃度之參數設定 86

圖目錄
圖1-1、太陽能電池分類 4
圖2-1太陽電池電路模型 10
圖2-2 太陽電池I-V 曲線 11
圖2-3 導電帶中歐傑復合 圖2-4 價電帶中歐傑復合 14
圖2-5 N-SI 與P-SI 在不同參雜濃度下之載子生命週期[13] 15
圖2-6 薄膜沉積示意圖[20] 22
圖2-7 薄膜生長過程[22] 22
圖2-8 SIH4 經一次電子所需不同能量產生之物種[23] 24
圖2-9 個物種於電漿中存在之密度[24] 24
圖2-10 SIH3生長非晶矽薄膜示意圖[29] 31
圖2-11傳統太陽能電池結構與SANYO的H.I.T 結構太陽電池差異圖[32] 36
圖2-22(A)相同製程條件下使用A-SI與碘化學鈍化對於少數載流子LIFETIME的影響(B)HIT SOLAR CELL 以 A-SI鈍化後之少數載流子LIFETIME與開路電壓之關聯[33] 36
圖2-23單晶矽與P LAYER 間的I LAYER 的結晶化[34] 36
圖2-24界面I LAYER 結晶化對太陽能電池轉化效率的影響[34] 37
圖2-25不同氫稀釋率之生命週期、氫含量、結晶率之關係[37] 37
圖3-1 實驗流程圖 41
圖3-2 ECR-CVD 設備示意圖 45
圖3-3 ECR-CVD 主磁場示意圖 45
圖3-4 光放射光譜儀裝置圖 48
圖3-5 傅氏轉換紅外線光譜儀裝置圖 50
圖3-6 拉曼光譜以高斯分佈擬合出三種波型 52
圖3-7快速退火爐裝置圖 53
圖3-8 SintonWCT-120.…………………………………………………………………………………..56
圖3-9 WCT-120脈衝光源 56
圖3-10WCT-120濾片 56
圖3-11WCT-120量測底座……………………………………………………..……………………..56
圖4-1不同厚度之LIFETIME變化 61
圖4-2不同功率之光譜強度變化 61
圖4-3不同功率之物種相對於AR濃度變化 62
圖4-4不同功率之電子溫度光譜比值變化 62
圖4-5不同功率沉積矽薄膜之虛部介電函數的ΕI 63
圖4-6不同功率沉積矽薄膜之光吸收係數 63
圖4-7不同功率沉積矽薄膜之拉曼光譜圖 64
圖4-8不同功率下沉積矽薄膜之LIFETIME與IMPLIED VOC變化 64
圖4-9不同功率下薄膜氫含量與微結構參數之變化 65
圖4-10 不同工作壓力之物種之光譜強度變化 68
圖4-11不同工作壓力之物種相對於AR濃度比值變化 69
圖4-12不同工作壓力之電子溫度光譜比值變化 69
圖4-13不同工作壓力沉積矽薄膜之虛部介電函數的ΕI 70
圖4-14不同工作壓力沉積矽薄膜之光吸收係數 70
圖4-15不同工作壓力沉積矽薄膜之拉曼光譜圖 71
圖4-16不同壓力下沉積矽薄膜之LIFETIME與IMPLIED VOC變化 71
圖4-17不同工作壓力下薄膜氫含量與微結構參數之關係 72
圖4-18 ECR-CVD 主磁場示意圖 74
圖4-19不同共振位置之物種之光譜強度變化 75
圖4-20不同共振位置之物種相對於AR濃度比值變化 75
圖4-21不同共振位置之電子溫度光譜比值變化 76
圖4-22不同共振位置沉積矽薄膜之虛部介電函數的ΕI 76
圖4-23不同共振位置沉積矽薄膜之光吸收係數 77
圖4-24不同共振位置沉積矽薄膜之拉曼光譜圖 77
圖4-25不同共振位置下沉積矽薄膜之LIFETIME與IMPLIED VOC變化 78
圖4-26不同共振位置下薄膜氫含量與微結構參數之關係 78
圖4-27不同溫度之物種之光譜強度變化 80
圖4-28不同溫度之物種相對於AR濃度比值變化 81
圖4-29不同溫度沉積矽薄膜之虛部介電函數的ΕI 81
圖4-30不同溫度沉積矽薄膜之光吸收係數 82
圖4-31不同溫度沉積矽薄膜之拉曼光譜 82
圖4-32不同溫度下沉積矽薄膜之LIFETIME與IMPLIED VOC變化 83
圖4-33不同溫度之薄膜氫含量與微結構參數之關係 83
圖4-34不同氫稀釋濃度之光譜強度變化 86
圖4-35 不同氫稀釋濃度之物種相對於AR濃度變化 87
圖4-36不同氫稀釋濃度之電子溫度變化 87
圖4-37不同氫稀釋比沉積矽薄膜之虛部介電函數的ΕI 88
圖4-38 不同氫稀釋濃度下之拉曼圖譜 88
圖4-39 不同氫稀釋濃度下之HΑ*/SIH* 89
圖4-40不同氫稀釋比下沉積矽薄膜之LIFETIME與IMPLIED VOC變化 89
圖4-41不同氫稀釋比之薄膜氫含量與微結構參數之LIFETIME變化 90
圖4-42在不同退火溫度下各微波功率之LIFETIME變化 94
圖4-43在不同退火溫度下各工作壓力之LIFETIME變化 94
圖4-44在不同退火溫度下各共振位置之LIFETIME變化 95
圖4-45在不同退火溫度下各基材溫度之LIFETIME變化 95
圖4-46在不同退火溫度下各氫稀釋比之LIFETIME變化 96
圖4-47經過退火270 ˚C-120S後LIFETIME與IMPLIED VOC之改善 97
圖4-48經過退火270 ˚C-120S後R*與CH之改善 97
參考文獻 [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] I. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[3] 魏寶文,趙紅衛,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[4] D. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[5] A. Cambel and M. Cambel, Plasma physics, Boston Heath, 1965.
[6] S. ossnagel, J. Cuomo and W. Westwood, Handbook of plasma processing technology Fundamentals, William Dickson, 1937.
[7] H. Kaufman, “Explanation of Bohm diffusion”, Journal of Vacuum Science & Technology B, Vol. 8, pp. 107-109, 1990.
[8] M. Taguchi*, “Obtaining a Higher Voc in HIT Cells”, Progress in Photovoltaics: Research and Applications, Vol. 13, pp. 481-488, 2005.
[9] D. Smith, Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[10]J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon”, Applied Physics Letters, Vol. 31, pp. 346- 368, 1977.
[11] A. Richter, F. Werner, A. Cuevas, J. Schmidt, and S. Glunz, et al., “Improved parameterization of Auger recombination in silicon”, Energy Procedia, vol. 27, pp. 88-94, 2012.
[12]A. Matsuda, M. Takai and T. Nishimoto, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, vol. 78, 2003.
[13]S. Dauwe, Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells, harderberg, 2004.
[14]M. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, Vol. 91, pp. 2473-2481, 2002.
[15]W. Shockley and W. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, Vol. 87, pp. 835–842, 1952.
[16] R. Hall, “Electron-Hole Recombination in Germanium”, Physical Review, Vol. 87, pp. 387–387, 1952.
[17] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., “Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition”, Journal of Applied Physics, Vol. 98, pp. 114912-114921, 2005.
[18]R. Sinton and A. Cuevas, “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, Vol. 69, pp. 2510-2513, 1996.
[19]H. Nagel, C. Berge, and A. G. Aberle, “Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors”, Journal of Applied Physics, Vol. 86, pp. 6218-6221, 1999.
[20] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[21] 莊達人,VLSI 製造技術,高立圖書有限公司,1996.
[22]J. Venables, “Nucleation and Growth of Thin films”, Reports on Progress in Physics, Vol. 47, pp. 399-459, 1984.
[23] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol. 78, pp. 3-26, 2003.
[24]A. Matsuda, “Thin-Film Silicon-Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics, Vol. 43, pp. 7909–7920, 2004.
[25]Y. Ruoche and L. Kuixun, Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge, 1997.
[26] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803–2811, 1987.
[27] A. Triska, D. Dennison, and H. Fritzsche, “Hydrogen content in amorphous-Ge and Si prepared by RF decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, vol. 20, pp. 392-397, 1975.
[28]R.Schrop and M.Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[29]J. Robertson, “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol. 266-269, pp. 79–83, 2000.
[30]H. Sterling and R. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electronics, Vol. 8, pp. 653-654, 1965.
[31] D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, Vol.31, pp.292–294, 1977.
[32] SANYO North America Corporation. Basic Structure of a HIT Cell. http://us.sanyo.com/Solar/SANYO-HIT-Technology.
[33] T. Müller, Heterojunction Solar Cells (a-Si/c-Si): Investigations on PECV Deposited Hydrogenated Silicon Alloys for Use as High-Quality Surface Passivation and Emitter/BSF, Logos Verlag Berlin GmbH, 2009.
[34] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[35] F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, A. Migliori et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films, Vol. 451–452, pp. 350–354, 2004.
[36]H. Fujiwara and M. Kondo, “Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy”, Applied Physics Letters, Vol. 86, pp. 032112-032115, 2005.
[37] J. Ge, Z. Ling, J. Wong, T. Mueller and A. Aberle et al., “Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells”, Energy Procedia, Vol. 15, pp. 107-117, 2012.
[38] K. Kiriluk, J. Fields, B. Simonds, Y. Pai and P. Miller et al., “Highly efficient charge transfer in nanocrystalline Si:H solar cells”, Applied Physics Letters, Vol. 102, pp. 133101-133105, 2013.
[39]H. Yang, C. Wu, J. Huang and R. Ding et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol. 472, pp. 125–129, 2005.
[40]P. Kumar, F. Zhu and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol. 33, pp. 3938–3944, 2008.
[41] S. Ram, L. Kroely, S. Kasouit, P. Bulkin, and P.Roca et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, physica status solidi©, Vol. 7, pp. 553–556, 2010.
[42] S. Lien, Y. Chang, Y. Cho, J. Wang and K. Weng et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol. 357, pp.161–164, 2011.
[43] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azumab and H. Shirai et al., “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[44] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp. 1-2, 1999.
[45] H. Yang, C. Wu, J. Huang and R. Ding et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol. 472, pp. 125–129, 2005.
[46] H. Hsiao, H. Hwang, A. Yang, L. Chen and T. Yew et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol. 142, pp. 316–321, 1999.
[47]M. Takai, T. Nishimoto, M. Kondo and A. Matsuda et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Applied Physics Letters, Vol. 77, pp. 18-22, 2000.
[48] Z. Wua, J. Sun, Q. Lei, Y. Zhao, X. Geng and J. Xi et al., “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy ”, Physica E, Vol. 33, pp. 125–129, 2006.
[49]A. Matsuda, M. Takai, T. Nishimoto and M. Kondo et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol. 78, pp. 3–26, 2003.
[50]K. Saito and M. Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, physica status solidi (a), Vol. 207, pp. 535–538, 2010.
[51]M. Kitagawa, K.Setsune and Y. Manabe, “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, Japanese Journal of Applied Physics, Vol. 27, pp. 2026–2031, 1988.
[52]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. Jauberteau, J. Desmaison, and C. Dong et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[53] E. Campbell, M. Rosen, D. Phillion and R. Price et al., “Laser plasma coupling in long pulse, long scale length plasmas”, Applied Physics Letters,Vol. 43, pp. 54-59, 1983.
[54] A. Francis, U. Czarnetzki, H. Döbele, and N. Sadeghi et al., “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Applied Physics Letters, Vol. 71, pp. 37-96, 1997.
[55] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[56] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo and A. Matsuda et al., “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol. 299, pp. 1116–1122, 2002.
[57] S. Guha, J. Yang, S. Jones, Y. Chan and D. Williamson et al., “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Applied Physics Letters, Vol. 61, pp. 1444-1447, 1992.
[58]G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Applied Physics Letters, Vol. 69, pp. 371-378, 1996.
[59]Q. Cheng, S. Xu and K. Ostrikov, “Localization and dynamic change of saponin in root tuber of cultivated Pseudostellaria heterophylla”, Nanotechnology, Vol. 20, pp. 1-5, 2009.
[60] W. Jackson, S. Kelso, C. Tsai and J. Allen et al., “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon”, Physical Review B, Vol. 31, pp. 51-87, 1985.
[61]S. Bowden, V. Yelundur and A. Rohatgi, “Implied-Voc and Suns-Voc measurements in multicrystalline solar cells”, Conference Record of the Twenty-Ninth IEEE, pp. 371-374, 2002.
[62]楊德仁,太陽電池材料,化學工業出版社,2011年。
[63]S. Rossnagel, J. Cuomo and W. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, Noyes Publications, 1990.
[64]Oleg A. Popov, High Density Plasma Sources: Design, Physics, and Performance, Noyes Publications , 1995.
[65]R. A. Street, Hydrogenated Amophous Silicon, Cambridge University Press, New York (1991).
[66]莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司印行(2007).
[67]林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 (2008).
[68] A.Szekeres, M.Gartner, F. Vasiliu, M. Marinov, G.Beshkov, “Crystallization of a-si:H films by rapid thermal annealing”, Journal of Non-Crystalline Solid, Vol. 227, pp. 954-957, 1998.
指導教授 利定東(Ting-tung Li) 審核日期 2013-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明