博碩士論文 100328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.191.205.99
姓名 莊子慶(Tzu-Ching Chuang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ 稻殼於流體化床進行快速裂解產製生質燃油之研究★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響
★ 反向氣流對微小粉末於儲槽排放行為影響之研究★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化
★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) MOCVD(metal organic chemical vapor deposition )為製作LED磊晶片重要的設備,其中,關鍵零組件進氣擴散系統透過噴嘴(nozzle)或是噴氣頭(showerhead)的方式,將氣體送入反應腔體進行氣體混合和化學反應。本文是使用計算流體力學軟體Fluent針對Veeco E300腔體進行模擬分析,研究內容可以分成二個部分:第一部分為探討製程參數:進氣流率、腔體壓力、載台轉速、壁面溫度、進氣口與載台距離及探討出口最佳位置和角度,以上的模擬結果與將與文獻的結果相比較,已確認模型的準確性。第二部分則以建立的腔體熱流場為基礎,在進氣擴散系統下方設計-進氣擋板,進氣檔板能增加了進氣擴散系統進氣排列的變化性,能有效隔絕氣體進入腔體時就產生混合,造成進氣孔的阻塞,本文為針對檔板長度、檔板幾何外型、傾斜角度、三五族金屬源比例等對腔體熱流場的影響進行研究並找出最佳的設計且進行三維模型驗證,結果發現最佳設計為在檔板傾斜角度35∘時對於成長速率和TMGa濃度均勻性皆有明顯的改善,證明此進氣擴散系統能達到高均勻度的磊晶薄膜,並能有效減少MO氣體的使用量。
摘要(英) MOCVD is one of the most important equipment and widely used for the epitaxial growth of LED wafers. The key component “gas injection system” was sent the gas into the reactor by using the nozzle or the showerhead .which happen chemical reaction and gas mixing .In this paper ,we use the computer simulation (Fluent) method to investigate the VEECO E300 chamber’s thermal flow and design the new gas injection system. The numerical parameter will involve the inlet flow rate ,the chamber pressure, the susceptor rotation rate ,the wall temperature ,the distance between inlet and susceptor ,outlet location, outlet degree ,we use the dimensionless number(Re, Gr, Rew) to realize the mechanism between the force convection and the natural convection, then improve the flow uniformity, beside, we also compare with paper to define the ture model.
According to this basic thermal flow model for ,we design the “inlet barrier” under the gas injection system, inlet barrier can obstruct the different reaction gas ,reduce the pre-reaction and deposit particle on the wall. the numerical parameter are the barrier length ,the barrier geometry, the barrier incline degree, and the V/III precursor ratio, it is found that the increase of the barrier’s length has reduce the small recirculation between the barrier, the best barrier design(barrier incline degree 35∘) not only increases the growth rate ,but also improves the concentration uniformity, we proved that the barrier really decreases the MO gase’s usage.
關鍵字(中) ★ MOCVD
★ Fluent
關鍵字(英)
論文目次 目錄
摘要 I
Abstract IV
誌謝 V
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2 MOCVD磊晶機台設備開發關鍵技術 2
1.3 MOCVD反應腔體與進氣擴散系統種類 6
1.3.1研究型水平反應腔體 7
1.3.2生產型反應腔體 8
1.4文獻回顧 11
1.5研究動機 14
1.6研究內容 15
第二章 理論模式 16
2.1腔體熱流場分析 16
2.1.1強制對流與自然對流效應 16
2.1.2流場穩定之定義 17
2.1.3熱質傳耦合效應 18
2.2薄膜沉積機制 18
2.2.1薄膜沉積原理 18
2.2.2化學氣相沉積反應機制 20
2.3數值模擬(Fluent)軟體簡介 21
2.4 SIMPLE算法 22
2.4.1有限體積法 22
2.4.2 SIMPLE法 23
2.5基本假設 25
2.6統御方程式與邊界條件 26
2.7氣體輸送特性 28
2.8物理模型及參數設定 30
2.9網格獨立性分析 35
2.10薄膜成長速率分析計算 37
第三章 結果與討論 39
3.1製程參數模擬 39
3.1.1進氣流率對熱流場的影響 39
3.1.2腔體壓力對熱流場的影響 46
3.1.3載台轉速對熱流場的影響 53
3.1.4壁面溫度對熱流場的影響 61
3.1.5進氣口與載台間距離對熱流場的影響 64
3.1.6排氣出口位置對熱流場的影響 70
3.1.7排氣出口角度對熱流場的影響 73
3.2進氣擴散系統設計結果 77
3.2.1進氣檔板設計介紹 77
3.2.2進氣檔板長度(l)的探討 80
3.2.3不同進氣檔板幾何形狀的探討 87
3.2.4不同進氣檔板傾斜角度()的探討 94
3.2.5反應氣體進氣比例的探討 107
3.2.6反應氣體進氣比例三維模型探討 110
第四章 結論與展望 117
參考文獻 119
參考文獻 [1]Laytec 量測示意圖, http://www.semiconductor-today.com/news_items/2010/APRIL/LAYTEC1_210410.htm,2010
[2]Aixtron 水平式腔體,
http://www.aixtron.com/hk/products/product-portfolio/,2012
[3]G. Evans, and R. Greif, “Effect of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, "Numerical Heat Transfer , Vol. 12, pp. 243-252, 1987.
[4]D.I. Fotiadis, and S. Kieda, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy I. Effects of heat transfer characteristics, reactor geometry,and operating conditions,” Journal of crystal Growth, Vol. 102, pp. 441-470, 1990.
[5]D.W. Weyburne, and B.S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor,” Journal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[6]T.G. Mihopoulos, “Simulation of flow and growth phenomena in a close-spaced reactor,” Journal of Crystal Growth, Vol. 195, pp. 725-732, 1998.
[7]C.Y. Soong, C.H Chyuan, and R.Y Tzong, “Thermo-flow structure and epitaxial uniformity in large-scale metalorganic chemical vapor deposition reactors with rotating susceptor and inlet flow control,” Japanese Journal of applied Physics, Vol.37,pp. 5823-5834, 1998.
[8]C. Park, J.Y. Hwang, M. Huang, and T.J. Anderson, “Investigation of an upflow cold-wall CVD reactor by gas phase Raman spectroscopy,” Thin Solid Films, Vol. 409, pp. 88-97, 2002.
[9]G. Luo, S.P. Vanka, and N. Glumac, “Fluid Flow And Transport Processes In A Large Area Atmospheric Pressure Stagnation Flow CVD Reactor For Deposition Of Thin Films,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4979-4994, 2004.
[10]S.P. Vanka, G. Luo, and N.G. Glumac, “Numerical Study of Mixed Convection Flow in an Impinging Jet CVD Reactor for Atmospheric Pressure Deposition of Thin Films,” Journal of Heat Transfer, Vol. 126, No. 5, pp. 764-775, October 2004.
[11]A. Lobanova, K. Mazaev, and E. Yakovlev, “Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors,” Journal of Crystal Growth , Vol. 266, pp. 354-362, 2004.
[12]L. Kadinskia, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, and Y. Makarov, “Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors,” Journal of Crystal Growth, Vol. 261, pp. 175–181, 2004.
[13]B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under awide range of process parameters,” Journal of Crystal Growth, Vol. 287, pp. 656–663, 2006.
[14]B. Mitrovic, A. Gurary, W. Quinn, “Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Crystal, Vol. 303, pp. 323-329, 2007.
[15]C. Theodoropoulos, T.J. Mountziaris, H.K. Moffat, J. Han. “Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy,” Journal of Crystal Growth , Vol. 217,pp. 65-81, 2000
[16]C.Y Shin, B.J Baek, C.R Lee, B Pak,J.M Yoon, K.S Park, “Numerical analysis for the growth of GaN layer in MOCVD reactor,” Journal of Crystal Growth, Vol. 247,pp. 301–312, 2003
[17]R. Zuo, H. Zhang, X.l Liu, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets,” Journal of Crystal Growth, Vol. 293, pp. 498-508, 2006.
[18]R. Zuo, Q. Xu, H. Zhang, “An inverse-flow showerhead MOVPE reactor design,” Journal of Crystal Growth, Vol. .298, pp. 425-427, 2007.
[19]C.H. Lin, W.T. Cheng, J.H. Lee, “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling,” International Communications in Heat and Mass Transfer, Vol. 36,pp. 680-685, 2009.
[20]C.S Kim, J. Hong, J. Shim , Y.S Won, and Yong.I Kwon, “Multiphysics Modeling and Design of Ultralarge Multiwafer MOVPE Reactor for Group III-Nitride Light Emitting Diodes,” EuroSimE , 11th, 2010.
[21]L.Q Yang, Z. Chen, J.Zhang, and A.G. Li, “Transport Phenomena in a Novel Large MOCVD Reactor for Epitaxial Growth of GaN Thin Films,” IEEE Transactions on semiconductor manufacturing, Vol. 25,No. 1, 2012.
[22]H. Li , R. Zuo , X.J fung , G.X Li , and B.C Zhou, “Numerical study of flow phenomena in a photo-assisted MOCVD reactor for preoaring YBCO thin films,” ENGINEERING MECHANICS, Vol. 28, No. 6, 2011.
[23]T.C. Cheng, P.H. Chiou, T.F. Lin, “Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber,” International Journal of Heat and Mass Transfer, Vol. 45,pp. 3357-3368, 2002.
[24]J.C. Hsieh, C.W. Cheng, T.F. Lin, “Suppression of buoyancy-driven vortex flow resulting from a low speed jet impinging onto a heated disk in a vertical cylinder by cylinder top tilting,” International Journal of Heat and Mass Transfer, Vol. 47,pp. 3031-3045, 2004.
[25]莊達人, “VLSI 製造技術,” 高立圖書有限公司, 1996。
[26]ANSYS FLUENT 12.0, User ’ s Guide, 2009
[27]郭峰鳴, “MOCVD反應器之氮化鎵薄膜成長參數探討,” 國立中山大學, 碩士論文, 2004
[28]李鴻傑, “有機金屬化學氣相沉積出口效應之數值模擬,” 國立中山大學, 碩士論文, 2002
[29]林宜正, “化學氣相沉積之噴氣頭性能模擬分析,” 國立中山大學, 碩士論文, 2003
[30]隋景生, “新型多噴淋頭式MOCVD反應器的數值模擬及優化設計,” 江蘇大學, 碩士論文, 2010
[31]于海群, “氮化鎵MOCVD化學反應動力學分析及其數值模擬研究,” 江蘇大學, 博士論文, 2012
[32]馮繼賢, “砷化鎵沉積均勻度的數值研究,” 國立屏東科技大學, 碩士論文, 2003
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明