博碩士論文 100328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.238.98.214
姓名 林哲宇(Lin, Jhe-yu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
(Measurement and Analysis on Self-Acceleration of Cellular Spherical Flames and Local Similarities)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析
★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)★ 實驗研究密度比效應對紊流火焰速率之影響
★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實驗量測表面具蜂巢結構之向外傳播球狀火焰的自我加速特性,以及分析其是否具自我相似性(self-similar)或局部自我相似性(locally similar)。在層流球狀火焰向外傳播的過程中,可能會受到三種不穩定性的影響,分別為:(1)熱擴散不穩定性(當Lewis數Le = DT/DM < 1,即熱質擴散係數比小於1,其會在很小火焰半徑R即產生),(2)流力不穩定性(天生的火焰不穩定性)和(3)浮力不穩定性(當R約達5cm以上時)。這些不穩定性的影響,會使火焰表面持續產生蜂巢或皺褶結構,進而使火焰表面積增加並使傳播速率增快,導致球狀火焰的自我加速。在過去的研究中,計算球狀火焰自我加速的耦合公式,均以火焰平均半徑(Rav)隨時間(t)變化之冪次法則指數(α)來決定,即Rav = R0 + A(t-t0)α,其中R0和t0為球狀火焰開始產生蜂巢結構時之火焰半徑和時間,A為實驗常數。因R0和t0會因實驗之條件不同而有所變化,這會影響α值之正確性。有鑑於此,最近普林斯頓大學Law和其研究團隊(Wu et al. 2013)想出一可規避R0和t0之方法,即對Rav = Atα作時間微分以獲取火焰傳播速率(SF),其中SF = dRav/dt = αA1/αRav(α - 1)/α,如此可由對數座標SF vs. Rav之斜率d = (α - 1)/α,來正確地決定α值。Law 團隊找到球狀火焰自我加速指數α值,在任一固定壓力(p)和當量比(φ)條件下,α值為一定值,即球狀火焰具自我相似性傳播(self-similar propagation),且其值較α = 1.5小很多,故他們不認為球狀火焰具有自我紊流化之特性。
本研究採用Law團隊所提出決定α值之方法,針對高壓貧油氫/空氣和甲烷/空氣燃氣進行一系列實驗,藉由高速高解析度球狀火焰紋影影像,量測Rav和t之關係,以獲取SF與Rav之關係圖,進而求得α值。實驗結果顯示,氫/空氣混合燃氣在p = 0.5atm和φ = 0.6時(Le ≈ 0.44),由於受到熱擴散不穩定性(Le < 1)與流力不穩定性(高壓環境火焰厚度變小,越易發生)的影響,可清楚看見火焰在其發展初始階段,即會在火焰表面產生蜂巢狀結構。隨著蜂巢結構持續地增加發展,導致球狀火焰之自我加速。我們首度發現此自我加速具局部相似之特性,即α值會有一轉折非為一定值。在較小氫球狀火焰半徑(12mm ≤ Rav < 2.7mm)時,α = 1.30,此值與Law團隊在相同條件所得之α = 1.26相當接近;而隨著t增加, Rav會持續擴展,當27mm ≤ Rav < 50mm,α值會增加至1.42,顯示氫球狀火焰傳播具局部相似(locally similar)而非一般所認為之自我相似(self-similar)。有關接近化學計量比之甲烷/空氣燃氣(φ = 0.9; Le ≈ 1)和在p = 5atm條件下,球狀火焰起初以近乎等速(α = 1.02)發展一段時間後,在Rav大約為30mm處,球狀火焰之自我加速開始產生,此時α值增加至1.15 (30 mm ≤ Rav < 4.3mm);令人驚訝的是,當球狀火焰隨時間持續成長(43mm ≤ Rav < 70mm),其α值可增加至1.47,相當接近理論上認為可產生自我紊流化α = 1.5之預測值。本研究結果,對了解預混火焰不穩定性和其動態行為有重要之貢獻。
摘要(英) This thesis measures self-acceleration characteristics of expanding cellular spherical flames and analyzes whether such self-acceleration propagation is either self-similar in time (t), if it holds for all t, or locally similar, if it holds only for a specific period of t. Propagation of laminar spherical flames is subjected to three possible flame front instabilities, namely: (1) thermal-diffusional instability (when the Lewis number, Le = DT/DM which is the heat and mass diffusion coefficient ratio, is less than 1, occurring at relatively small flame radius (R); (2) hydrodynamic instability (an inherent flame instability); (3) buoyancy instability (when R is approximately larger than 50mm). These flame front instabilities can result in cellular structures and/or wrinkles over the flame front surface upon flame propagation that continuously develop, so that the flame surface area is increased and thus the global flame propagation rate is also increased, leading to self-acceleration of expanding spherical flame. In previous studies, the power-law acceleration exponent (α) was commonly determined by a fitting formula of Rav = R0 + A(t-t0)α, where Rav is the flame average radius, R0 and t0 are the corresponding radius and time on the onset of flame wrinkling, and A is an experimental constant. However, values of R0 and t0 depend on the experimental conditions that can influence the correctness of α. Very recently, Law and his coworkers (Wu et al. 2013) found a better way to determine α without using R0 and t0 , that is to take the time derivation of Rav = Atα to obtain the flame propagation speed [SF = dRav/dt = αA1/αRav(α-1)/α] and thus α can be more accurately determined from the slope [d = (α - 1)/α] of the log-log plot of SF vs. Rav data. They found that α is a constant value at any given pressure (p) and equivalence ratio (φ) for H2/air mixtures, suggesting that self-accelerating cellular spherical flames are self-similar propagation, same as other previous studies. However, their α values ranging from 1.17~1.37 are generally smaller than 1.5, a value for self-turbulization.
The present study applies the same method as Law’s group to determine α. Focus is placed on high-pressure combustion experiments, including both lean hydrogen/air mixtures at φ = 0.6 and p = 0.5atm where Le ≈ 0.44 and near-stoichiometric methane/air mixtures at φ = 0.9 and p = 0.5atm where Le ≈ 1. Using high-speed high resolution Schlieren imaging technique to record and measure the time evolution of Rav, SF can be then determine from dRav/dt and α can be thus obtained. Results show that for lean H2/air case (Le << 1), cellular structures are observed at the very early stage of flame propagation due to thermal-diffusional and hydrodynamic instabilities. The cells continuously develop leading to flame self-acceleration. Most importantly, it is found that such acceleration is locally similar (not self-similar) where a transition on values of α is found. When 12mm ≤ Rav < 27mm, α = 1.30, while α increases to 1.42 when Rav ≥ 27mm. For the CH4/air case with Le ≈ 1, the spherical flame first expands at an almost constant propagation rate for a considerable long period of time where α = 1.02, then self-acceleration of cellular spherical flame starts to initiate around Rav ≈ 30mm where α increases to 1.15 for 30mm ≤ Rav < 43mm, and finally and surprisingly the value of α jumps to 1.47 for 43mm ≤ Rav < 70mm, a value closely matching with the theoretical vale (α = 1.5) for self-turbulization. These results are important to our further understanding of flames front instabilities and dynamics.
關鍵字(中) ★ 蜂巢結構球狀火焰
★ 火焰不穩定性
★ 火焰自我加速
★ 火焰局部相似傳播
★ 冪次法則加速指數
★ Lewis 數
關鍵字(英) ★ Cellular-spherical flame
★ Flame instabilities
★ Flame self-acceleration
★ Flame locally similar propagation,
★ Power-law acceleration exponent
★ Lewis number
論文目次 摘要 I
Abstract III
謝誌 V
圖目錄 IX
表目錄 XI
符號說明 XII
第1章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方案 2
1.4 論文架構 3
第2章 文獻回顧 4
2.1 火焰傳播 4
2.2 火焰拉伸 4
2.3 層流燃燒速度計算 6
2.4 熱擴散不穩定性 7
2.5 流力不穩定性 8
2.6 浮力不穩定性 9
2.7 層流火焰自我加速 9
2.8 自我加速耦合公式 12
2.9 光學紋影系統 13
第3章 實驗設備與方法 26
3.1 高壓預混十字型燃燒系統 26
3.2 光學紋影系統 27
3.3 高功率脈衝放電系統及引燃能量計算 28
3.4 高速影像擷取系統 28
3.5 實驗參數計算 29
3.6 燃氣當量比 29
3.7 火焰傳播速度 30
3.8 實驗前準備 31
3.9 實驗流程 31
第4章 結果與討論 35
4.1 實驗腔體與壁面影響 35
4.2 火焰傳播影像 36
4.3 層流燃燒速度 37
4.4 氫/空氣火焰自我加速 40
4.5 甲烷/空氣火焰自我加速 41
4.6 引燃能量對於火焰自我加速之影響 42
第5章 結論與未來工作 54
5.1 結論 54
5.2 未來工作 55
參考文獻 57
參考文獻 [1] Law, C.K., Combustion Physics, Cambridge University Press, pp. 456-461 (2006).
[2] Gostintsev, Y.A., Istratov, A.G., and Shulenin, Y.V., “Self-Similar Propagation of A free Turbulent Flame in Mixed Gas”, Combustion Explosion and Shock Waves, Vol.24, pp.63-67 (1988).
[3] Lind, C.D., and Whitson, J.C., “Explosion Hazards Associated with Spill of Large Quantities of Hazardous Materials Phase II,” Technical Report CG-D-85-77, Department of Transportation, U. S. Coast Guard. (1977).
[4] Bradley, D., Cresswell, T.M, and Puttock, J.S., “Flame Acceleration Due to Flame-Induced Instabilities in Large-Scale Explosions”, Combustion and Flame, Vol.124, pp.551-559 (2001).
[5] Gostintsev, Y.A., Fortov, V.E., and Shatskikh, Y.V., “Self-Similar Propagation Law and Fractal Structure of the Surface of a Free Expanding Turbulent Spherical Flame”, Doklady Physical Chemistry, Vol.397, pp. 141–144 (2004).
[6] Wu, F., Jomaas, G., and Law, C.K., “An Experimental Investigation on Self-Acceleration of Cellular Spherical Flames”, Proceeding of the Combustion Institute, Vol.34, pp.937-945 (2013).
[7] Kitagawa, T., Ogawa, T., and Nagano, Y., “The Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Spherically Propagating Laminar Flames,” COMODIA, August 2-5, Japan (2004).
[8] Vu, T.M., Park, J., Kwon, O.B., Bae, D.S., Yun, J.H., Keel, S.I., “Effects of diluents on cellular instabilities in outwardly propagating spherical syngas–air premixed flames”, International Journal of Hydrogen Energy, Vol.35, pp. 3868–3880 (2010).
[9] Law, C.K., “Dynamics of Stretched Flames.” Proc. Combust. Inst., Vol. 22, pp. 1381-1402 (1988).
[10] Poinsot, T., Veynante, D., and Candel, S., “Diagrams of Premixed Turbulent Combustion Based on Direct Simulation,” Proc. Combust. Inst., Vol. 23, pp. 613-619 (1990).
[11] Gu, X.J., Haq, M.Z., Lawes, M., and Woolley, R., “Laminar Burning Velocities and Markstein Lengths of Methane-Air Mixtures,” Combust. Flame, 121, pp. 41–58. (2000).
[12] Markstein, G. H., Nonsteady Flame Propagation, Pergamon, (1964).
[13] Hassan, M.I., Aung, K.T., and Faeth, G.M., “Measured and Predicted Properties of Laminar Premixed Methane/Air Flames at Various Pressures,” Combust. Flame, Vol.115, pp. 539–550 (1998).
[14] Darrieus, G., “Propagation D’Un Front de Flamme: Assai de Théorie des Vitesses Anomales de Déflagration par Developpement Spontané de la turbulence”, Presented at 6th Int. Cong. Appl. Mech., Paris, (1938).
[15] Landau, L.D., and Lifshitz, E.M., Fluid Mechanics, Pergamon, Oxford, (1987).
[16] Williams, F.A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, (1985).
[17] Haq, M.Z., “Correlation for the Onset of Instabilities of Spherical Laminar Premixed Flames”, Journal of Heat Transfer, Vol. 127, pp.1410-1415 (2005).
[18] Kwon, O.C., Rozenchan, G., and Law C.K., “Cellular Instabilities and Self-Acceleration of Outwardly Propagating Spherical Flames”, Proceedings of the Combustion Institute, Vol.29, pp.1775–1783 (2002).
[19] Jeronimo, A., and Haegen, V.V.D., “Schlieren Technique – Lab Notes”, Von Karman Institute for Fluid Dynamics, (2002).
[20] Liepmann, H.W., and Roshko, A.l, “Elements of Gasdynamics”, John Wiley & Sons, New York, (1957).
[21] Settles, G.S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Springer, (2001).
[22] Liu, C.C., Shy, S.S., Chen, H.C., Peng, M.W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully- Developed Isotropic Turbulence at Elevated Pressure”, Proceedings of the Combustion Institute, Vol.33 pp.1293–1299 (2011).
[23] 彭明偉, “中心引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[24] Liu, C.C., Shy, S.S., Chiu, C.W., Peng, M.W., Chung, H.J., “ Hydrogen/Carbon Monoxide Syngas Burning Rates Measurements in High-Pressure Quiescent and Turbulent Environment” International Journal of Hydrogen Energy, Vol.36, pp.8595-8603 (2011).
[25] Shy, S.S., Lin W.J. and Peng K.Z., “High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner. , Proc. Combust. Inst., Vol. 28, pp. 561-568, (2000).
[26] Shy, S.S., I, W.K. and Lin, M.L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study”, Exp. Thermal Fluid Sci., Vol. 25, pp. 1341-1347, 1994
[27] Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K. and Niioka, T., “Turbulence Measurements and Observations of Turbulent Premixed Flames at Elevated Pressures up to 3.0 MPa”, Combust. Flame, Vol.108, pp.104-117 (1997).
[28] Chien-Wen Chiu, Yi-Chih Dong, Shenqyang Steven Shy, “High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers”, International Journal of Hydrogen Energy, Vol. 37, pp. 10935-10946(2012).
[29] Bradley, D., Gaskell, P.H. and Gu, X.J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study”, Combust. Flame, Vol.104, pp.176-198 (1996).
[30] Glassman, I. and Yetter R. A., Combustion. 4th ed. Amsterdam: Academic Press, (2008).
指導教授 施聖洋(Shenqyang Steven Shy) 審核日期 2013-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明