博碩士論文 100328017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.149.251.155
姓名 許皓妮(Hao-ni Hsu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較
(Precipitation of carbonate to prepare Ba0.5Sr0.5Co0.8Fe0.2O3 and its cathodic character before and after treatment with Ag-diffusion)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究
★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究
★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響
★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作
★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究
★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討★ n-型(100)矽單晶巨孔洞之電化學研究
★ 鋁在酸性溶液中孔蝕行為研究★ 微陽極引導電鍍與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以含特定濃度之鋇、鍶、鈷與鐵等硝酸鹽溶液,加入碳酸銨溶液,在控制pH下,共沉獲得Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF氧化物)之碳酸鹽前驅物,經不同溫度煆燒所得粉末材料,製成固態氧化物燃料電池陰極,研究其結晶性質、表面形貌、電化學性質等,探討作為燃料電池陰極觸媒之可行性。結果顯示:含0.1M硝酸鋇、0.1M硝酸鍶、0.16M硝酸鈷與0.04M硝酸鐵溶液在加入飽和碳酸銨溶液,滴定至滴定終點為pH 8.0,過濾後得沉澱物,經1000℃煆燒2小時後獲得粉末,製成電池陰極。由場發射電子顯微鏡(FE-SEM)觀察陰極材料表面,顯示為多孔結構;X光繞射光譜儀(XRD)鑑定粉末晶體結構,顯示為純屬鈣鈦礦結構的Ba0.5Sr0.5Co0.8Fe0.2O3,未出現其他相。此種氧化物,經加入硝酸銀加溫,形成銀顆粒附著在BSCF氧化物顆粒上,所製成之固態氧化物燃料電池之陰極,其孔隙率由38.89 %降至33.74 %,因而影響到其陰極行為。
摘要(英) Carbonate precursor of Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF oxide) was prepared by chemical precipitation from a nitrate solution containing specific concentrations of barium, strongnium, cobalt and iron to react with a saturated solution of ammonium carbonate at various pH values. After filtration, the precipitate was calcined at different temperatures to form Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF oxide) powder that in turn was fabricated as the cathode catalyst. The surface morphology, crystalline structure and electrochemical property of the cathode catalyst were investigated prior to and post treatment with silver nitrate at elevated temperatures to estimate its cathodic catalyst used in the solid oxide fuel cells (SOFC). Resulting from chemical precipitation of a nitrate solution containing 0.1 M barium, 0.1 M strongnium, 0.16 M cobalt and 0.04 M iron reacted with a saturated solution of ammonium carbonate at pH equal to 8.0, the precipitate was filtered out, dried and calcined at 1000℃ for 2 h to attain the oxide powder. Through examination of FE-SEM, the calcined oxide revealed a porous morphology. Analysis of x-ray diffraction (XRD) displayed that the crystal of the oxide belonged to a perovskite of Ba0.5Sr0.5Co0.8Fe0.2O3 without presence of any detectable impurity. The oxide powder was fabricated into cathode catalyst which was treated with silver nitrate at elevated temperatures to study the effect of this treatment. Silver particles were coated on the BSCF oxide. It was found that the cathode catalyst decreased the porosity from 38.89% to 33.74 % after the treatment. It will influence its cathodic reactivity.
關鍵字(中) ★ 固態氧化物燃料電池
★ 陰極
★ 催化劑
★ 化學共沉澱法
★ 滲透法
★ 電化學
關鍵字(英) ★ SOFC
★ Cathode
★ Catalyst
★ Chemical co-precipitation method
★ Permeation method
★ Electrochemistry
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章簡介 1
1.1 研究背景 1
1.2 研究動機 3
1.3研究目的與目標 4
第二章原理與文獻回顧 5
2.1固態氧化物燃料電池簡介 5
2.2固態氧化物燃料電池原理 7
2.3陰極材料之性質 9
2.3.1鈣鈦礦結構 10
2.3.2陰極材料 10
2.4固態氧化物電池材料常用合成法 12
2.5電池測試原理 16
2.6文獻回顧 19
2.6.1 SOFC陰極材料文獻回顧 19
2.6.2電化學交流阻抗文獻回顧 22
第三章實驗方法 26
3.1實驗藥品與材料 26
3.2樣品準備與製程 26
3.2.1 BSCF陰極粉末製備 26
3.2.2黏結劑與陰極膏製備 27
3.2.3半電池製備 28
3.2.4含銀之改質陰極製備 29
3.3儀器分析設備 29
3.3.1 X光繞射儀(X-Ray Diffractormeter, XRD) 29
3.3.2場發射電子顯微鏡(FE-SEM) 30
3.3.3感應耦合電漿質譜分析儀(ICP-MS) 31
3.3.4熱重分析儀(TGA) 31
3.3.5孔隙率量測 32
3.3.6電導率量測 33
第四章研究結果 34
4.1碳酸鹽共沉法製備BSCF陰極粉末 34
4.1.1煆燒溫度對BSCF粉末結構與形貌之影響 34
4.1.2 pH值對BSCF粉末結構與形貌之影響 37
4.1.3粉末ICP-MS分析 37
4.1.4粉末熱重分析 38
4.2陰極性質分析 38
4.2.1陰極層孔隙率量測 38
4.2.2陰極表面與斷面SEM分析 39
4.2.3陰極材料之電導率量測分析 40
第五章討論 42
5.1 BSCF中成份之溶解度積與pH值關係 42
5.1.1沉澱劑選擇對結晶結構之影響 42
5.1.2表面微結構分析 43
5.2 BSCF摻銀前後之特性探討 44
第六章結論 45
參考文獻 47
參考文獻 [1] 衣寶廉,燃料電池-原理與應用,初版,五南出版社,552頁,台北市,民國九十四年。
[2] T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura and T. Inagaki, Journal of Power Sources, 106, 142, 2002.
[3] N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada and M. Dokiya, Journal of Electrochem. Soc., (9), 147, 3178-3182, 2000.
[4] Y. T. Lin, “Synthesis of Novel Cathode Materials Ba0.5Sr0.5CuxFe1−xO3-δ for IT-SOFC by Solution Combustion Methode”, National Taipei University of Technology, 2009.
[5] M. C. Wiliams, “Solid oxide fuel cell:Fundamentals to system”, Fuel cell, p.78-85, 2007.
[6] from ”http://www.physics.montana.edu/sofc/index.html”.
[7] Z. H. Zeng, “Electrical Conductivity and Chemical Stability of Yttrium Doped SrCeO3”, National Central University, 2012.
[8] S. H. Zhan, “Investigating the performance of Ni-YSZ cermet as anode for SOFC”, National Taiwan Normal University, 2010.
[9] K. Harrison,Chemistry, Structures & 3D Molecules @ 3Dchem.com, 2011, from “http://www.3dchem.com/inorganicmolecule.asp?id=1618”
[10] J. M. Serra, H. P. Buchkremer, “On the nanostructuring and catalytic promotion of intermediatetemperature solid oxide fuel cell (IT-SOFC) cathodes”, Journal of power sources, vol.172, p.768-774, 2007.
[11] M. M. Kuklja, Yu. A. Mastrikov, S. N. Rashkeev, E. A. Kotomin, “The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O3 Complex Perovskites”, the electrochemical society, vol.35, p.2077-2084, 2011.
[12] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, 2004.
[13] D. H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, 2004.
[14] S. Saha, S. J. Ghanawat, R. D. Purohit, “High-performance low- temperature solid oxide fuel cell with novel BSCF cathode”, Journal of Materials Science, vol.41, p. 1939-1943, 2006.
[15] M. Q. Wang, “Department of Chemical Engineering”, National Cheng Kung University, 2004.
[16] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine-Nitrate Process and its application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, vol. 91, p.1155-1162, 2008.
[17] C. H. Wu, “Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system”, National Taipei University of Technology, 2006.
[18] Y. Y. Yang, “Structural and electrical performance analysis on nanostructure of plasma-spray- coating solid oxide fuel cell anode (Ni/YSZ)”, National Tsing Hua University, 2005.
[19] S. C. Yan, “以Pechini 聚合前導物法製備(Ba,Ca)(Ti,Zr)O3奈米粉體之研究”, National Cheng Kung University, 2005.
[20] C. T. Wu, “Preparation and Characterization of Lanthanum-Indium (Gallium)- Zirconium Oxides by Chemical Coprecipitation”, National Cheng Kung University, 2003.
[21] Erwin Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute Of Technology Zurich, degree of doctor, 2008.
[22] R. J. Bell, G. J. Millar, J. Drennan, “Influence of synthesis route on the catalytic properties of La1-xSrxMnO3”, Solid State Ionics, vol.131, p.211-220, 2000.
[23] C. Li, K. C. K. Soh, P. Wu, “Formability of ABO3 perovskites”, Journal of Alloys and Compounds, vol.372, p.40-48, 2004.
[24] B. Wei, Z. Lu, X. Huang, J. Miao, X. Sha, X. Xin, W. Su, “ Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3−δ”, Journal of the European Ceramic Society, vol.26, p.2827-2832, 2006.
[25] Z. H. Chen, R. Ran,W. Zhou, Z. P. Shao, S. M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3−δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, vol.52, issue 25, p.7343-7351, 2007.
[26] C. A. J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide Ion Diffusion in Perovskite-structured Ba1-xSrxCo1-yFeyO2.5:A Molecular Dynamics Study”, Solid State Ionics, vol.177, p.3425-3431, 2007.
[27] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W. Q. Jin,N. P. Xu, J. M. Ahn, “Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta,vol.53, p.4370-4380, 2008.
[28] Y. Lin, R. Ran, Y. Zheng, Z. P. Shao,W. Q. Jin, N. P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for ananode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, vol.180, p.15-22, 2008.
[29] W. Zhou, R. Ran, R. Cai, Z. P. Shao,W. Q. Jin, N. P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ electrode prepared by electroless deposition technique”, Journal of Power Sources, vol.186, p.244-251, 2009.
[30] Y. Lin, R. Ran, Z. Shao, “Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathodesfor a proton conducting solid-oxide fuel cell”, International Journal of hydrogen energy, vol.35, p.8281-8288, 2010.
[31] T. Y. Lee, “Synthesis and properties of La0.8Sr0.2Mn1−xRuxO3 as cathodes for solid oxide fuel cells”, National Central University, 2011.
[32] F. P. Ting, “Electrochemical impedance spectroscopy study on the performance of SOFC influenced by cathodes containing different Ag-contents and that of PEMFC influenced by hot-pressing”, National Central University, 2012.
[33] E. Warburg, “Polarization capacity of platinum”, Annalen der Physik, vol.6, p.125-135, 1901.
[34] J. E. B. Randles, “Kinetics of rapid electrode reactions”, Discussions of the Faraday Society, vol.1, p.11-19, 1947.
[35] J. H. Sluyters, M. Sluyter-Rehbach, Marcel Dekker, “Electroanalytical Chemistry”, New York, vol.4, 1970.
[36] J. H. Sluyters, M. Sluyter-Rehbach, “Comprehensive Treatise of Electrochemistry”, Plenum, New York, vol.9, p.177, 1984.
[37] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, vol.52, issue 28, p.8144-8164, 2007.
[38] F. Yusoff, A. Aziz, N. Mohamed, S. A. Ghani, “Synthesis and Characterizations of BSCF at Different pH as Future Cathode Materials for Fuel Cell”, International Journal of Electrochimical Science, vol.8, p.10672-10687, 2013
[39] H. Patra, S. K. Rout, S. K. Pratihar, S. Bhattacharya, “Effect of process parameters on combined EDTA–citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite”, Powder Technology, vol.209, p.98-104, 2011.
[40] S. Liu1, M. Liu, Z. Shao, J. C. D. Costa1, Z. P. Xu, “From Chelating Precursor to Perovskite Oxides and Hollow Fiber Membranes”, Powder Technology, vol. 90, p.84-91, 2007.
[41] W. X. Zhong, “Co-precipitation Synthesis of La0.6Sr0.4Co0.2Fe0.8O3-δ- Sm0.2Ce0.8O3-δ for IT-SOFC Composite Cathode”, National Taipei University of Technology, 2009.
[42] H. C. Yu, “Investigation of Using Perovskite Sr-doped Lanthanum Cuprate as Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells”, National Cheng Kung University, 2005.
指導教授 林景崎(Jing-chie Lin) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明