博碩士論文 100329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.172.195.49
姓名 謝宗翰(Tsung-han Hsieh)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以靜電紡絲技術製備二氧化鈦奈米纖維之研究
(Preparation of Titanium Dioxide Nanofibers Using Electrospinning Method)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討
★ 離子佈植對鎳合金矽化物之影響★ 二氧化鈦基表面增強拉曼基板之製作與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為利用靜電紡絲技術製備銳鈦礦相二氧化鈦奈米纖維。靜電紡絲法是一種利用高分子溶液或融熔態在高電場作用下由噴嘴噴出進行紡絲的過程,我們使用溶膠−凝膠(Sol-gel)法製備前驅溶液,將聚乙烯吡咯烷酮(PVP)與異丙醇鈦混合在酒精溶液之中,當液滴在高電場作用下由針頭注射出形成靜電射流後,會形成PVP及非晶二氧化鈦的複合奈米纖維。接著這些纖維再於空氣中利用450°C退火處理去除高分子及殘留溶劑,並使二氧化鈦結晶形成銳鈦礦相。此外,我們可藉由改變四種電紡的製程參數:PVP濃度、注射速率、電壓及收集距離,探討其對二氧化鈦奈米纖維形貌與直徑的影響;藉由加入硝酸銀至前驅溶液,可以合成出二氧化鈦/銀的複合奈米纖維;藉由加入礦物油至前驅溶液進行共紡,可製備出具有中空結構的二氧化鈦奈米管;藉由改變收集器的形式變成兩平行導電電極,可製備出具有序排列的奈米纖維。
接著我們將異丙醇鈦及醋酸鈷分別溶於乙二醇單甲醚中並混合均勻,再加入PVP高分子。以此前驅溶液進行電紡,經由不同的退火溫度而得到鈦酸鈷的奈米纖維,可應用於氣體感測器及光催化等方面。
摘要(英) In this study, we utilized electrospinning technique to fabricate anatase TiO2 nanofibers, by using a polymer solution or melt injecting from a small nozzle under the influence of high voltage electric field. We used the sol-gel method to synthesis the precursor which containing both poly(vinyl pyrrolidone) (PVP, Mw ≈ 1,300,000) and titanium isopropoxide in ethanol. When the liquid was injected through a needle under a strong electrical field, composite nanofibers made of PVP and amorphous TiO2 were formed as a result of electrostatic jetting. The polymer or residual solvent in these nanofibers could be subsequently removed and these nanofibers could convert into anatase phase via annealing in air at 450°C. In addition, we fabricated TiO2 nanofibers by using different parameters: PVP concentration, feeding rate, voltage, and collecting distance. We discussed how these parameters affected the morphology and the diameter of TiO2 nanofibers. By adding AgNO3 to our TiO2/PVP precursor, we could fabricate TiO2/Ag composite nanofibers. By using co-electrospinning method by adding mineral oil to TiO2/PVP precursor, we could fabricate hollow TiO2 nanotubes. By modifying the form of the collector to two parallel conducting electrodes, we could generate nanofibers as uniaxially aligned arrays.
Then titanium isopropoxide and cobalt acetate were dissolved in 2-methoxyethanol followed by adding PVP. Using above solution as the precursor for electrospinning, via different annealing temperature, we could obtain CoTiO3 nanofibers. The CoTiO3 nanofibers could be used in gas sensors and photocatalysts.
關鍵字(中) ★ 電紡
★ 奈米纖維
★ 二氧化鈦
★ 鈦酸鈷
關鍵字(英) ★ electrospinning
★ nanofibers
★ titanium dioxide
★ cobalt titanate
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
第一章 緒論
1.1 靜電紡絲技術簡介 1
1.2 靜電紡絲裝置及原理 3
1.3 控制靜電紡絲製程 7
1.3.1 控制形貌與直徑 7
1.3.2 改變化學組成 9
1.3.2.1 功能性高分子及其混合物 9
1.3.2.2 無機/高分子複合物及陶瓷材料 10
1.3.2.3 加入功能性材料 12
1.3.2.4 奈米纖維改質 13
1.3.3 改變纖維結構 14
1.3.3.1 核/殼結構 15
1.3.3.2 中空結構 15
1.3.3.3 多孔結構 17
1.4 有序排列之電紡纖維 19
1.4.1 轉軸法 19
1.4.2 電極法 20
1.4.3 磁性法 22
1.5 TiO2奈米纖維 22
1.6 CoTiO3奈米纖維 24
第二章 實驗方法
2.1 實驗藥品 25
2.2 實驗儀器 26
2.2.1 靜電紡絲實驗機 26
2.2.2 管型爐 27
2.2.3 掃描式電子顯微鏡 28
2.2.4 X光粉末繞射儀 29
2.2.5 穿透式電子顯微鏡 29
2.3 實驗流程 30
2.3.1 製備TiO2奈米纖維 31
2.3.2 製備TiO2/Ag複合奈米纖維 34
2.3.3 製備中空結構TiO2奈米管 35
2.3.4 製備有序排列之奈米纖維 37
2.3.5 製備CoTiO3奈米纖維 39
第三章 實驗結果與討論
3.1 TiO2奈米纖維 41
3.1.1 PVP濃度 41
3.1.2 注射速率 43
3.1.3 電壓 45
3.1.4 收集距離 46
3.1.5 TiO2奈米纖維SEM分析 48
3.1.6 TiO2奈米纖維XRD分析 49
3.1.7 TiO2奈米纖維TEM分析 50
3.2 TiO2/Ag複合奈米結構 51
3.3 中空結構TiO2奈米管 52
3.4 有序排列之奈米纖維 53
3.5 CoTiO3奈米纖維 54
第四章 結論 58
第五章 未來展望 59
參考文獻 60
參考文獻 [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15, 353 (2003)
[2] D. H. Reneker, I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, 7, 216 (1996)
[3] A. Frenot, I. S. Chronakis, “Polymer nanofibers assembled by electrospinning,” Curr. Opin. Colloid Interface Sci., 8, 64 (2003)
[4] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol., 63, 2223 (2003)
[5] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse,”Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” J. Appl. Phys., 87, 4531 (2000)
[6] Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, “Electrospinning: A whipping fluid jet generates submicron polymer fibers,” Appl. Phys. Lett., 78, 1149 (2001)
[7] A. G. Bailey, Electrostatic Spraying of Liquids, Wiley, New York (1988)
[8] A. Formhals, US patent 1-975-504 (1934)
[9] G. I. Taylor, “Disintegration of water drops in an electric field,” Proc. Roy. Soc. London, 280, 383 (1964)
[10] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost., 35, 151 (1995)
[11] R. Kessick, J. Fenn, G. Tepper, “The use of AC potentials in electrospraying and electrospinning processes,” Polymer, 45, 2981 (2004)
[12] A. L. Yarin, S. Koombhongse, D. H. Reneker, “Taylor cone and jetting from liquid droplets in electrospinning of nanofibers,” J. Appl. Phys., 90, 4836 (2001)
[13] Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, “Experimental characterization of electrospinning: the electrically forced jet and instabilities,” Polymer, 42, 9955 (2001)
[14] M. M. Hohman, M. Shin, G. C. Rutledge, M. P. Brenner, “Electrospinning and electrically forced jets. I. Stability theory,” Phys.
Fluids, 13, 2201 (2001)
[15] M. M. Hohman, M. Shin, G. C. Rutledge, M. P. Brenner, “Electrospinning and electrically forced jets. II. Applications,” Phys. Fluids, 13, 2221 (2001)
[16] S. V. Fridrikh, J. H. Yu, M. P. Brenner, G. C. Rutledge, “Controlling the fiber diameter during electrospinning,” Phys. Rev. Lett., 90, 144502 (2003)
[17] J. S. Kim, D. H. Reneker, “Polybenzimidazole nanofiber produced by electrospinning,” Polym. Eng. Sci., 39, 849 (1999)
[18] D. Li, Y. Wang, Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,” Nano Lett., 3, 1167 (2003)
[19] D. Fang, B. S. Hsiao, B. Chu, “Multiple-jet electrospinning of non-woven nanofiber articles,” Polym. Prepr., 44, 59 (2003)
[20] P. Gupta, G. L. Wilkes, “Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach,” Polymer, 44, 6353 (2003)
[21] S. Madhugiri, 
A. Dalton, J. Gutierrez, J. P. Ferraris, K. J. Balkus, Jr.,” Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method,” J. Am. Chem. Soc., 125, 14531 (2003)
[22] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, ” Compound core-shell polymer nanofibers by co-electrospinning,” Adv. Mater., 15, 1929 (2003)
[23] D. Li, Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,” Nano Lett., 4, 933 (2004)
[24] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40, 4585 (1999)
[25] J. N. Smith, 
R. C. Flagan, J. L. Beauchamp, “Droplet evaporation and discharge dynamics in electrospray ionization,” J. Phys. Chem. A, 106, 9957 (2002)
[26] D. Li, Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?,” Adv. Mater., 16, 1151 (2004)
[27] J. M. Deitzel, K. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, 42, 261 (2001)
[28] S. Koombhongse, W. Liu, D. H. Rekener, “Flat polymer ribbons and other shapes by electrospinning,” J. Polym. Sci. B Polym. Phys., 39, 2598 (2001)
[29] H. Fong, W. Liu, C. S. Wang, R. A. Vaia, “Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite,” Polymer, 43, 775 (2002)
[30] R. V. N. Krishnappa, K. Desai, C. Sung, “Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage,” J. Mater. Sci., 38, 2357 (2003)
[31] M. G. McKee, G. L. Wilkes, R. H. Colby, T. E. Long, “Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters,” Macromolecules, 37, 1760 (2004)
[32] S. A. Theron, E. Zussman, A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, 45, 2017 (2004)
[33] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, 43, 4403 (2002)
[34] A. G. MacDiarmid, W. E. Jones, Jr., I. D. Norris, J. Gao, A. T. Johnson, Jr., N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, “Electrostatically-generated nanofibers of electronic polymers,” Synth. Met., 119, 27 (2001)
[35] S. W. Choi, S. M. Jo, W. S. Lee, Y.-R. Kim, “An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications,” Adv. Mater., 15, 2027 (2003)
[36] W. R. Caseri, H. D. Chanzy, K. Feldman, M. Fontana, P. Smith, T. A. Tervoort, J. G. P. Goossens, E. W. Meijer, W. Egbert, A. P. H. J. Schenning, I. P. Dolbnya, M. G. Debije, M. P. de Haas, J. M. Warman, A. M. van de Craats, R. H. Friend, H. Sirringhaus, N. Stutzmann, “ “(Hot-)Water-Proof”, semiconducting, platinum-based chain structures: processing, products, and properties,” Adv. Mater., 15, 125 (2003)
[37] J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, X. Jing, “Ultrafine fibers electrospun from biodegradable polymers,” J. Appl. Polym. Sci., 89, 1085 (2003)
[38] E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, G. E. Wnek, “Electrospinning of poly(ethylene-co-vinyl alcohol) fibers,” Biomaterials, 24, 907 (2003)
[39] J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, 3, 232 (2002)
[40] G. E. Wnek, C. E. Marcus, D. G. Simpson, G. L. Bowlin, ”Electrospinning of Nanofiber Fibrinogen Structures,” Nano Lett., 3, 213 (2003)
[41] H. Jiang, D. Fang, B. S. Hsiao, B. Chu, W. Chen, “Optimization and characterization of dextran membranes prepared by electrospinning,” Biomacromolecules, 5, 326 (2004)
[42] S. W. Lee, A. M. Belcher, “Virus-based fabrication of micro- and nanofibers using electrospinning,” Nano Lett., 4, 387 (2004)
[43] H. J. Jin, S. V. Fridrikh, G. C. Rutledge, D. L. Kaplan, “Electrospinning bombyx mori silk with poly(ethylene oxide),” Biomacromolecules, 3, 1233 (2002)
[44] I. D. Norris, M. M. Shaker, F. K. Ko, A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met., 114, 109 (2000)
[45] K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, M. Hadjiargyrou, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials, 24, 4977 (2003)
[46] D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett., 3, 555 (2003)
[47] S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett., 22, 891 (2003)
[48] P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, M. A. Morris, “Preparation and morphology of niobium oxide fibres by electrospinning,” Chem. Phys. Lett., 374, 79 (2003)
[49] C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, S. J. Park, “Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning,” Mater. Lett., 57, 1579 (2003)
[50] H. Guan, C. Shao, B. Chen, J. Gong, X. Yang, “A novel method for making CuO superfine fibres via an electrospinning technique,” Inorg. Chem. Commun., 6, 1409 (2003)
[51] H. Guan, C. Shao, B. Chen, J. Gong, X. Yang, “Preparation and characterization of NiO nanofibres via an electrospinning technique,” Inorg. Chem. Commu., 6, 1302 (2003)
[52] X. Yang, C. Shao, H. Guan, X. Li, J. Gong, “Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor,” Inorg. Chem. Commun., 7, 176 (2004)
[53] B. Ding, H. Kim, C. Kim, M. Khil, S. Park, “Morphology and crystalline phase study of electrospun TiO2–SiO2 nanofibres,” Nanotechnology, 14, 532 (2003)
[54] P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, “Vanadium pentoxide nanofibers by electrospinning,” Scr. Mater., 49, 577 (2003)
[55] N. Dharmaraj, H. C. Park, B. M. Lee, P. Viswanathamurthi, H. Y. Kim, D. R. Lee, “Preparation and morphology of magnesium titanate nanofibres via electrospinning,” Inorg. Chem. Commun., 7, 431 (2004)
[56] V. Raman, G. Bhatia, S. Bhardwaj, A. K. Srivastva, K. N. Sood, “Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques,” J. Mater. Sci., 40, 1521 (2005)
[57] A. Pedicini, R. J. Farris, “Thermally induced color change in electrospun fiber mats,” J. Polym. Sci. B Polym. Phys., 42, 752 (2004)
[58] Q. B. Yang, D. M. Li, Y. L. Hong, Z. Y. Li, C. Wang, S. L. Qiu, Y. Wei, ”Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning,” Synth. Met., 137, 973 (2003)
[59] H. Hou, Z. Jun, A. Reuning, A. Schaper, J. H. Wendorff, A. Greiner, “Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers,” Macromolecules, 16, 2429 (2002)
[60] H. Hou, D. H. Reneker, “Carbon nanotubes on carbon nanofibers: A novel structure based on electrospun polymer nanofibers,”Adv. Mater., 16, 69 (2004)
[61] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, “Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns,” Adv. Mater., 15, 1161 (2003)
[62] Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin, E. Zussman, “Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning,” Langmuir, 19, 7012 (2003)
[63] C. Seoul, Y.-T. Kim, C.-K. Baek, “Electrospinning of poly(vinylidene fluoride)/dimethylformamide solutions with carbon nanotubes,” J. Polym. Sci. B Polym. Phys., 41, 1572 (2003)
[64] Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, M. Hadjiargyrou, “Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers,” J. Controlled Release, 89, 341 (2003)
[65] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, “Biodegradable electrospun fibers for drug delivery,” J. Controlled Release, 92, 227 (2003)
[66] E. H. Sanders, R. Kloefkorn, G. L. Bowlin, D. G. Simpson, G. E. Wnek, “Two-phase electrospinning from a single electrified jet: Microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers,” Macromolecules, 36, 3803 (2003)
[67] X. Wang, Y.G. Kim, C. Drew, B.C. Ku, J. Kumar, L. A. Samuelson, ” Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors,” Nano Lett., 4, 331 (2004)
[68] C. Drew, X. Liu, S. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, J. Kumar, ”Metal oxide-coated polymer nanofibers,” Nano Lett., 3, 143 (2003)
[69] N. J. Pinto, P. Carrión, J. X. Quiñones, “Electroless deposition of nickel on electrospun fibers of 2-acrylamido-2-methyl-1-propanesulfonic acid doped polyaniline,” Mater. Sci. Eng., A 366, 1 (2004)
[70] M. Bognitzki, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gösele, J. H. Wendorff, “Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process),” Adv. Mater., 12, 637 (2000)
[71] D. Li, J. McCann, M. Gratt, Y. Xia, “Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania,” Chem. Phys. Lett., 394, 387 (2004)
[72] X. Zong, S. Ran, D. Fang, B. S. Hsiao, B. Chu, “Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments,” Polymer, 44, 4959 (2003)
[73] H. Liu, Y. -L. Hsieh, “Surface methacrylation and graft copolymerization of ultrafine cellulose fibers,” J. Polym. Sci. B Polym. Phys., 41, 953 (2003)
[74] E.-R. Kenawy, Y. R. Abdel-Fattah, “Antimicrobial properties of modified and electrospun poly(vinyl phenol),” Macromol. Biosci., 2, 261 (2002)
[75] M. Wei, B. Kang, C. Sung, J. Mead, “Core-sheath structure in electrospun nanofibers from polymer blends,” Macromol. Mater. Eng., 291, 1307 (2006)
[76] X. Peng, A. C. Santulli, E. Sutter, S. S. Wong, “Fabrication and enhanced photocatalytic activity of inorganic core-shell nanofibers produced by coaxial electrospinning,” Chem. Sci., 3, 1262 (2012)
[77] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science, 297, 787 (2002)
[78] R. A. Caruso, J. H. Schattka, A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater., 13, 1577 (2001)
[79] D. Li, J. T. McCann, Y. Xia, “Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces,” Small, 1, 83 (2005)
[80] I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, “Electrically forced coaxial nanojets for one-step hollow nanofiber design,” J. Am. Chem. Soc., 126, 5376 (2004)
[81] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, “Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends,” Polym. Eng. Sci., 41, 982 (2001)
[82] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers,” Macromolecules, 35, 8456 (2002)
[83] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, “Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process,” Macromolecules, 37, 573 (2004)
[84] B. Lu, C. Zhu, Z. Zhang, W. Lan, E. Xie, “Preparation of highly porous TiO2 nanotubes and their catalytic applications,” J. Mater. Chem., 22, 1375 (2012)
[85] H. Zhao, B. Lu, J. Xu, E. Xie, T. Wang, Z. Xu, “Electrospinning–thermal treatment synthesis: a general strategy to decorate highly porous nanotubes on both internal and external side-walls with metal oxide/noble metal nanoparticles,” Nanoscale, 5, 2835 (2013)
[86] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science, 291, 630 (2001)
[87] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science, 300, 112 (2003)
[88] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, “Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering” Biomaterials 26, 2603 (2005)
[89] S. Y. Chew, J. Wen, E. K. F. Yim, K. W. Leong, “Sustained release of proteins from electrospun biodegradable fibers,” Biomacromolecules, 4, 2017 (2005)
[90] D. Li, Y. Wang, Y. Xia, “Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films,” Adv. Mater., 16, 361 (2004)
[91] D. Yang, B. Lu, Y. Zhao, X. Jiang, “Fabrication of aligned fibrous arrays by magnetic electrospinning,” Adv. Mater., 19, 3702 (2007)
[92] Y. Liu, X. Zhang, Y. Xia, H. Yang, “Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers,” Adv. Mater., 22, 2454 (2010)
[93] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev., 95, 735 (1995)
[94] X. Zhang, Z. B. Yao, L. Zhao, C. Liang, L. Zhang, Y. Mao, “Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays,” J. Electrochem. Soc., 148, G398 (2001)
[95] S. A. Berhe, S. Nag, Z. Molinets, W. J. Youngblood, “Influence of seeding and bath conditions in hydrothermal growth of very thin (∼20 nm) single-crystalline rutile TiO2 nanorod films,” ACS Appl. Mater. Inter., 5, 1181 (2013)
[96] A.-M. Lazar, D. Chaumont, Y. Lacroute, M. E. Gómez, J. C. Caicedo, G. Zambrano, M. Sacilotti, “TiO2 nanostructures prepared by ferrocene/cobalt catalyst agents,” Phys. Stat. Sol., A 205, 289 (2008)
[97] http://en.wikipedia.org/wiki/Ilmenite
[98] Y. Shao, W. Chen, E. Wold, J. Paul, “Dispersion and electronic structure of TiO2-supported cobalt and cobalt oxide” Langmuir, 10, 178 (1994)
[99] X. Chu, X. Liu, G. Wang, G. Meng, “Preparation and gas-sensing properties of nano-CoTiO3” Mater. Res. Bull., 34, 1789 (1999)
[100] M. Siemons, U. Simon, Sens. Actuat. B, 120, 110 (2006)
[101] M. P. Pechini, U.S. Patent No. 3, 330, 697 (1967)
[102] S. H. Chuang, R. H. Gao, D. Y. Wang, H. P. Liu, L. M. Chen, M. Y. Chiang, “Synthesis and characterization of ilmenite-type cobalt titanate powder,” J. Chin. Chem. Soc., 57, 932 (2010)
[103] M.-P. Zheng, M.-Y. Gu, Y.-P. Jin, H.-H. Wang, P.-F. Zu, P. Tao, J.-B. He, “Effects of PVP on structure of TiO2 prepared by the sol–gel process,” Mater. Sci. Eng., 87, 197 (2001)
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2013-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明