博碩士論文 100329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:35.175.191.168
姓名 林建安(Chien-an Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
(Characterization of multi-layered SiOxNy:H/SiCxNy:H antireflection coatings by electron cyclotron resonance chemical vapor deposition and their application on silicon solar cells)
相關論文
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
★ 旋轉塗佈摻雜溶液之擴散製程探討及其應用 於製備太陽能電池★ 週期性銀奈米粒子陣列於折射率感測之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於太陽電池而言,擁有良好的抗反射塗層,可以減少光損耗,進而提高了光電轉換效率。 氫化氮化矽層(SiNx:H)是使用最廣泛的矽晶體太陽能電池的單層抗反射膜(ARCS)。然而單層抗反射膜,只能在特定波長下獲得某個波段的最低反射率。為了進一步擴大抗反射波段,減少入射光在太陽能電池反射而損失,在許多研究紛紛提出由兩種以上不同的材料(如MgF2/CeO2,SiO2/TiO2和SiO2/SiNx)[1-3]的雙堆疊結構的抗反射層,相較於單層膜的僅單一波長抗反射,其擁比較寬的波長範圍內的抗反射效果。
在這項研究中,我們提出了一個新的抗反射結構,利用電子迴旋共振化學氣相沉積(ECRCVD)系統沉積SiOxNy:H/ SiCxNy:H的多層結構。藉由調整SiH4、CO2,CH4和N2等氣體的流量比,沉積SiOxNy:H和SiCxNy:H薄膜。經光譜橢偏儀測量的結果,調整不同流量比之SiOxNy:H和SiCxNy的折射率,可被調整在1.46〜2.05和2.06〜2.96 (633 nm)之範圍。
利用每一層薄膜的光學參數設計不同堆疊之抗反射層,並模擬SiOxNy:H/ SiCxNy:H多層結構的反射率、穿透率,經由模擬軟體優化厚度,最佳化之抗反射膜將藉由ECRCVD沉積於矽基板上,經UV-VIS分光光譜儀測量反射率,並和模擬結果進行比較。在單晶矽上反射率可降低至4.12%,而多晶矽上的抗反射率,可降到1.93%。並試圖將抗反射膜應用於多晶矽太陽能電池上,觀看其在電池上之表現。
摘要(英) It is well-known that a good antireflective coating, which could reduce the photocurrent loss and enhance the photoelectric conversion efficiency, is important for solar cells. Hydrogenated silicon nitride layers (SiNx:H) are most widely used for crystalline silicon solar cells as single-layer antireflection coatings (ARCs). However, low reflectance could only be obtained from a single-layer ARC at a specific wavelength. In order to further minimize the front reflection of solar cells, double-layer ARCs consisting of two different materials (such as MgF2/CeO2, SiO2/TiO2 and SiO2/SiN) have been developed due to their low reflectance at a relatively wide wavelength range
In this study, we propose a new ARC structure of SiOxNy:H/SiCxNy:H multilayer films deposited by electron cyclotron resonance chemical vapor deposition (ECRCVD) system. By adjusting the precursor gas flow ratios of SiH4、CO2、CH4 and N2, the composition of the SiOxNy:H and SiCxNy:H thin films could be adjusted. From our preliminary results, the refractive indexes of the SiOxNy:H and SiCxNy:H films measured by the spectroscopic ellipsometer are in a range of 1.46~2.05 and 2.06~2.96 (at 633 nm), respectively. These data will be used for the reflectance simulation to evaluate the performance of SiOxNy:H/SiCxNy:H multilayer structures and obtain the theoretically optimized thickness and optical parameters of each layer, which could be used as references for tuning the growth recipes of multi-layer SiOxNy:H/SiCxNy:H ARCs. After depositing the multi-layer ARCs on Si wafers, the reflectance will be measured by UV-VIS spectrophotometer and compared with the simulation results.
關鍵字(中) ★ 抗反射層
★ 氮氧化矽
★ 碳氮化矽
關鍵字(英) ★ Silicon oxynitride
★ Silicon carbonitride
★ Antireflection coatings
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1序 1
1-2研究背景與動機 2
1-3文獻回顧 4
1-4太陽能電池介紹 9
1-4-1 太陽能電池分類 9
1-4-2太陽能光譜 10
1-4-3矽太陽能能電池光電轉換原理 11
第二章 基本理論 13
2-1 抗反射層的原理 13
2-1-1 簡介 13
2-1-2 多層膜抗反射理論 15
2-1-3 薄膜優化 18
2-2薄膜簡介 19
2-2-1 SICXNY:H薄膜 19
2-2-2 SIOXNY:H薄膜 19
第三章 實驗步驟 20
3-1 薄膜製備與分析 21
3-1-1 實驗步驟 22
3-2 抗反射層之模擬 24
3-2-1 TFCALC 簡介 24
3-2-2 模擬流程 24
3-3 抗反射層及電池製作 25
3-4 儀器分析 26
第四章 實驗結果與討論 28
4-1 薄膜性質分析 28
4-1-1 A-SICXNY:H 28
4-1-2 A-SIOXNY:H 30
4-1-3 SICXNY和SINX吸收率之比較 33
4-2 抗反射層之模擬 35
4-2-1單層抗反射模擬結果 35
4-2-2 雙層抗反射模擬結果 37
4-2-3 三層抗反射模擬結果 40
4-2-4 模擬之多層抗反射層比較 42
4-3 實驗結果與模擬結果之比較 44
4-4 目前電池製作之結果與討論 47
4-4-1電池參數表現 47
4-4-2 表面鈍化 (SURFACE PASSIVATION) 48
第五章 結論 50
參考文獻 51
參考文獻 1. Chen, Z., et al., A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. Electron Devices, IEEE Transactions on, 1993. 40(6):1161-1165.
2. Lee, S., S. Choi, and J. Yi, Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate. Thin Solid Films, 2000. 376(1): 208-213.
3. Pettit, R.B., C.J. Brinker, and C.S. Ashley, Sol-gel double-layer antireflection coatings for silicon solar cells. Solar Cells, 1985. 15(3): 267-278.
4. Chitre, S.R., A high volume cost efficient production macrostructuring process. 13th IEEE Photovoltaic specialist conference, 1978: 152–154.
5. Macdonald, D.H., et al., Texturing industrial multicrystalline silicon solar cells. Solar Energy, 2004. 76(1–3): 277-283.
6. Junghänel, M., et al. Black multicrystalline solar modules using novel multilayer antireflection stacks. in Proc. 25th Eur. Photovoltaic Solar Energy Conf. 2010:511
7. Zhang, X.-T., et al., Self-Cleaning Particle Coating with Antireflection Properties. Chem Mater, 2005. 17(3): 696-700.
8. Walheim, S., et al., Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings. Science, 1999. 283(5401): 520-522.
9. Chen, Z., et al., A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. Electron Devices, IEEE Transactions on, 1993. 40(6): 1161-1165.
10. Duttagupta, S., et al., Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling. Energy Procedia, 2012. 15(0): 78-83.
11. Derbali, L. and H. Ezzaouia, Vanadium-based antireflection coated on multicrystalline silicon acting as a passivating layer. Solar Energy, 2012. 86(5): 1504-1510.
12. Kim, J., et al., Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell. Journal of Electroceramics, 2012: 1-5.
13. Rabha, M.B., et al., Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells. physica status solidi (c), 2011. 8(6): 1874-1877.
14. Chun-Wei, C., et al. Effects of advanced dual anti-reflection layer coating on crystalline silicon solar cell efficiency. in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE. 2011.
15. Gong, D., et al., SiNx Double Layer Antireflection Coating by Plasma-Enhanced Chemical Vapor Deposition for Single Crystalline Silicon Solar Cells. Japanese Journal of Applied Physics, 2011. 50(8).
16. J. Dupuis, J.-F.L., E. Fourmond, V. Mong-The Yen, O. Nichiporuk, N. Le Quang, M. Lemiti, SiOxNy - SiNx Double Antireflection Layer for Multicrystalline Silicon Solar Cells. 24th European Photovoltaic Solar Energy Conference 2009: 1636 - 1639.
17. Lipiński, M., et al., Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing. physica status solidi (c), 2007. 4(4): 1566-1569.
18. Aroutiounian, V., K. Martirosyan, and P. Soukiassian, Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells. Journal of Physics D: Applied Physics, 2004. 37(19): L25.
19. Richards, B., et al., TiO2 DLAR coatings for planar silicon solar cells. Progress in Photovoltaics: Research and Applications, 2003. 11(1): 27-32.
20. Chen, Z. and A. Rohatgi, Method for low temperature plasma enhanced chemical vapor deposition (PECVD) of an oxide and nitride antireflection coating on silicon, 1995, Google Patents.
21. Sheppard, P.A., Handbook of Geophysics. Geophysical Journal of the Royal Astronomical Society, 1960. 3(4): 476-478.
22. Macleod, H.A., Thin-film optical filters. 1986: Hilger.
23. Chen, D., Anti-reflection (AR) coatings made by sol–gel processes: A review. Solar Energy Materials and Solar Cells, 2001. 68(3–4): 313-336.
24. 李正中,薄膜光學與鍍膜技術. 2006: 藝軒.
25. Mastro, M.A., et al., High-reflectance III-nitride distributed Bragg reflectors grown on Si substrates. Applied Physics Letters, 2005. 87(24): 241103-241103-3.
26. Bouhafs, D., et al., Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Solar Energy Materials and Solar Cells, 1998. 52(1): 79-93.
27. Skaar, J., Fresnel equations and the refractive index of active media. Physical Review E, 2006. 73(2): 026605.
28. Jedrzejowski, P., et al., Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films, 2004. 447: 201-207.
29. Dupuis, J., et al., Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation. Thin Solid Films, 2008. 516(20): 6954-6958.
30. Aspnes, D., The accurate determination of optical properties by ellipsometry. Handbook of Optical Constants of Solids, 1985. 1: 89-112.
31. Rebib, F., et al., Effect of composition inhomogeneity in a-SiOxNy thin films on their optical properties. Optical Materials, 2009. 31(3): 510-513.
32. Yu, W., et al., Optical absorption spectra analysis of silicon-rich hydrogenated amorphous silicon nitride thin films. 2005: 420-423.
33. Zhao, Y., et al., Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure. Opt. Express, 2012. 20(10): 11121-11136.
34. Kurtz, S.R., et al. Passivation of interfaces in high-efficiency photovoltaic devices. in MRS Proceedings. 1999. Cambridge Univ Press.
35. Gomez, F., et al., SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition. Applied physics letters, 1996. 69(6): 773-775.
指導教授 陳一塵(I-chen Chen) 審核日期 2013-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明