博碩士論文 100329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.133.133.178
姓名 簡振宇(Chen-Yu Chien)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
(Preparation of CdSe Nanocrystals with Different Morphologies and the Application in Organic Photovoltaic Devices)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究合成不同形貌的硒化鎘(CdSe)量子點以應用於有機光伏太陽能電池(OPV)元件中主動層的施體(donor)。利用不同界面活性劑-三正辛基氧膦(TOPO)/正己基磷酸(HPA)、十六胺(HDA)/HPA以及油胺(OA)/十八烷烯(ODE)以合成CdSe奈米晶。此外,在閃鋅礦CdSe晶種上長出纖鋅礦分支的晶種成長法亦用以製備四足狀形貌的CdSe奈米晶。之後將CdSe奈米晶與聚(3-己烷基噻吩) (P3HT)和富勒烯衍生物(PCBM)混合使其成為OPV元件中之主動層。所製備CdSe奈米晶的形貌、結構、表面化學狀態、光學性質以及OPV元件的效率量測則由穿透式電子顯微鏡(TEM)、X光繞射分析(XRD)、光電子能譜儀(XPS)、感應耦合電漿原子發射光譜分析儀(ICP-AES)、紫外可見光吸收光譜儀(UV-vis)/螢光光譜儀(FL)、太陽光模擬器/光電流電壓量測(IV)做系統性的分析。
CdSe-T奈米晶由TOPO/HPA製備而成,當反應時間在10分鐘之後,可合成具有纖鋅礦結構之四足狀奈米晶,反應60分鐘的樣品其直徑及長度分別為4.6及16.7 nm。CdSe-H系列則由HDA/HPA製備,其形貌為分支狀而其最大直徑與長度分別為4.2與26.4 nm。與CdSe-T系列相比,因HDA在奈米晶表面的鍵結較強,會導致CdSe-T樣品之反應速率下降。由OA/ODE可製備出形貌為四足狀CdSe-O樣品,但此樣品的分支為全系列中最短的。晶種成長法可合成出具有閃鋅礦核種/纖鋅礦分支之四足狀奈米晶,且其產量最大,長度約為14 nm。
在四足狀樣品中Cd原子為電子施體,Se為受體。比較T60,H60及CdSe-SG樣品可發現其添加可增強OPV之光吸收能力及高平衡電荷載子流動性,可分別使短路電流(JSC)由9.6提升至10.3,10.8及10.9 mA/cm2,及效率由3.80提升至4.04,4.17及4.30 %。當CdSe-SG樣品的濃度由0增加至25及80 mg時,JSC由9.6提升至10.9再降至9.4 mA/cm2,同樣的效率由3.80提升至4.30再降至3.19 %,因此適當濃度CdSe的添加,有助於增益OPV元件中之電子傳導及光的吸收。
摘要(英) In this study, CdSe quantum dots (QDs) with different morphologies have been synthesized and applied as the donor in the active layer in the OPV devices. CdSe nanocrystals (NCs) are synthesized by using trioctylphosphine oxide (TOPO)/ hexylphosphonic acid (HPA), hexadecylamine (HDA)/HPA, and oleic acid (OA)/ octadecene (ODE) as surfactants. Besides, CdSe tetrapods with zinc-blend seeds and wurtzite arms are prepared by seed growth method. After that, CdSe NCs are mixed with P3HT:PCBM and used as the active layer of the OPV devices. The morphologies, structures, surface chemical states, chemical compositions, optical properties, and solar cell efficiencies are detected by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma – atomic emission spectrometer (ICP-AES), UV-visible absorption spectroscopy (UV-vis)/fluorescence (FL), and high fidelity solar simulator/IV measurement (IV), respectively.
CdSe-T NCs prepared by TOPO/HPA have tetrapod morphology and wurtzite structure when reacting after 10 mins. T60 sample has the diameter and length about 4.6 and 16.7 nm, respectively.
The morphology of CdSe-H samples prepared by HDA/HPA is branches, and the largest diameter and length is about 4.2 and 26.4 nm, respectively. Compared with CdSe-T samples, the bonding of HDA to the NC surface is stronger and the growth rate of NCs is lower. In terms of the CdSe-O prepared by OA/ODE, their morphology is tetrapod with the shortest length of arm among all samples. Seed growth synthesis can produce a large amount of CdSe tetrapods with length about 14.0 nm and zinc-blend core/wurtzite arm structure.
The Cd is electron supplier and Se is acceptor for the prepared CdSe tetrapods. The addition of T60, H60, and CdSe-SG samples can promote JSC from 9.6 to 10.3, 10.8, and 10.9 mA/cm2, and efficiency from 3.80 to 4.04, 4.17, and 4.30 %, respectively due to the enhancement in the light absorption ability and high balanced charge carrier mobility.
When the concentrations of CdSe-SG increases from 0 to 25 and 80 mg, JSC changes from 9.6 to 10.9 and 9.4 mA/cm2, and efficiency changes from 3.80 to 4.30 and 3.19 %, respectively, suggesting that appropriate CdSe content in the active layer is essential for the transport of electrons and light absorption in the OPV devices.
關鍵字(中) ★ CdSe
★ 量子點
★ 奈米晶
★ 四足狀
★ 有機太陽能電池
★ 光伏太陽能電池元件
關鍵字(英) ★ CdSe
★ quantum dots
★ nanocrystals
★ tetrapods
★ organic solar cells
★ OPV devices
論文目次 摘要……………………………………………………………………………………………………i
Abstract...0………………………………………………………………………………………….iii
Acknowledgement v
Table of Contents vii
List of Figures x
List of Tables xiv
Chapter I Introduction 1
1.1 Evolution of QDs 2
1.2 Solar cell 10
1.2.1 Evolution of solar cells 10
1.2.2 Organic solar cells 11
1.3 Motivation and Approach 16
Chapter II Experimental Procedure 17
2.1 Chemicals and Materials 17
2.2 Synthesis of CdSe NCs 19
2.2.1 CdSe-HPA/ (TOPO or HDA) 19
2.2.2CdSe-ODE/OA 19
2.2.3 CdSe-seed-growth 21
2.3 Preparation of OPV devices 25
2.4 Characterization of NCs 28
2.4.1 UV-visible absorption spectroscopy (UV-vis) 28
2.4.2 Fluorescence (FL) 28
2.4.3 Transmission electron microscopy (TEM) 28
2.4.4 X-ray diffraction (XRD) 30
2.4.5 X-ray photoelectron spectroscopy (XPS) 30
2.4.6 Inductively coupled plasma – atomic emission spectrometer (ICP-AES) 30
2.4.7 High fidelity solar simulator (AAA-class) 31
2.4.8 IV measurement (IV) 31
Chapter III Results and Discussion 33
3.1 The physical properties of CdSe-T NCs 33
3.1.1 The elemental compositions of CdSe-T NCs 33
3.1.2 The optical properties of CdSe-T NCs 33
3.1.3 The XRD analysis of CdSe-T NCs 35
3.1.4 TEM observation of CdSe-T NCs 39
3.1.5 Summary 41
3.2 The physical properties of CdSe-H 44
3.2.1 The elemental compositions of CdSe-H NCs 44
3.2.2 The optical properties of CdSe-H NCs 44
3.2.3 The XRD analysis of CdSe-H NCs 47
3.2.4 TEM observation of CdSe-H NCs 47
3.2.5 Summary 52
3.3 The physical properties of CdSe-O NCs 53
3.3.1 The optical properties and TEM observation of CdSe-O NCs 53
3.3.2 Summary 58
3.4 The physical properties of CdSe-SG NCs 59
3.4.1 The elemental compositions of CdSe seed and CdSe-SG NCs 59
3.4.2 The optical properties of CdSe-SG NCs 59
3.4.3 The XRD analysis of CdSe-SG NCs 61
3.4.4 The TEM observation of CdSe-SG NCs 61
3.4.5 Summary 65
3.5 Analysis of organic photovoltaic cells 66
3.5.1 The surface states of T60, H60, and CdSe-SG samples 66
3.5.2 The efficiency of OPV devices modified by various CdSe NCs 69
3.5.3 The efficiency of OPV devices modified by CdSe-SG of with various concentrations 75
3.5.4 Summary 79
Chapter IV Conclusions 81
References.............................................................................................................................................83
參考文獻 [1] A. Fontes, B. S. Santos, C. R. Chaves, R. Figueiredo, Intech. 1 (2011) 241-260.
[2] Y. w. Jun, S. M. Lee, N. J. Kang, J. Cheon, J. Am. Chem. Soc. 123 (2001) 5150-5151.
[3] L. Fang, J. Y. Park, Y. Cui, P. Alivisatos, J. Shcrier, B. Lee, L. W. Wang, M. Salmeron, J. Chem. Phys. 127 (2007) 184704-184706.
[4] T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 304 (2004) 1787-1790.
[5] I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, A. P. Alivisatos, Nano Lett. 7 (2007) 409-414.
[6] Y. Zhou, Y. Li, H. Zhong, J. Hou, Y. Ding, C. Yang, Y. Li, Nanotechnology 17 (2006) 4041-4047.
[7] J. van Embden, J. E. Sader, M. Davidson, P. Mulvaney, J. Phys. Chem. C 113 (2009) 16342-16355.
[8] H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang, L. Y. Chen, Nanoscale 2 (2010) 2679-2684.
[9] C. Murray, D. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706-8715.
[10] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123 (2001) 1389-1395.
[11] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 72 (1950) 4847-4854.
[12] C. Murray, C. Kagan, M. Bawendi, Annu. Rev. Mater. Sci. 30 (2000) 545-610.
[13] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 124 (2002) 3343-3353.
[14] L. Manna, E. C. Scher, A. P. Alivisatos, J. Clust. Sci. 13 (2002) 521-532.
[15] L. Qu, Z. A. Peng, X. Peng, Nano Lett. 1 (2001) 333-337.
[16] W. Wang, S. Banerjee, S. Jia, M. L. Steigerwald, I. P. Herman, Chem. Mater. 19 (2007) 2573-2580.
[17] J. I. Kim, J. K. Lee, Adv. Funct. Mater. 16 (2006) 2077-2082.
[18] D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, A. P. Alivisatos, Nano Lett. 7 (2007) 2951-2959.
[19] R. Xie, U. Kolb, T. Basché, Small 2 (2006) 1454-1457.
[20] M. Afzaal, P. O’Brien, J. Mater. Chem. 16 (2006) 1597-1602.
[21] F. H. Karg, Sol. Energ. Mat. Sol. C. 66 (2001) 645-653.
[22] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. Columbus 107 (2007) 1324-1338.
[23] D. Yu, C. Wang, P. Guyot-Sionnest, Science 300 (2003) 1277-1280.
[24] M. Grätzel, J. Photoch. Photobio. C 4 (2003) 145-153.
[25] B. O’regan, M. Grfitzeli, Nature 353 (1991) 737-740.
[26] J. H. Jeon, D. H. Wang, H. Park, J. H. Park, O. O. Park, Langmuir 28 (2012) 9893-9898.
[27] W. U. Huynh, X. Peng, A. P. Alivisatos, Proc. Electrochem. Soc. 99-11 (1999) 86-90.
[28] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295 (2002) 2425-2427.
[29] S. Dayal, M. O. Reese, A. J. Ferguson, D. S. Ginley, G. Rumbles, N. Kopidakis, Adv. Funct. Mater. 20 (2010) 2629-2635.
[30] A. Borel, F. Yerly, L. Helm, A. E. Merbach, J. Am. Chem. Soc. 124 (2002) 2042-2048.
[31] Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B 109 (2005) 16671-16675.
[32] J. Lim, W. K. Bae, K. U. Park, L. zur Borg, R. Zentel, S. Lee, K. Char, Chem. Mater. 25 (8) (2013) 1443–1449.
[33] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 1 (2001) 207-211.
[34] L. Qu, X. Peng, J. Am. Chem. Soc. 124 (2002) 2049-2055.
[35] J. W. Cho, H. S. Kim, Y. J. Kim, S. Y. Jang, J. Park, J. G. Kim, Y. J. Kim, E. H. Cha, Chem. Mater. 20 (2008) 5600-5609.
[36] N. X. Nghia, L. B. Hai, N. T. Luyen, P. T. Nga, N. T. T. Lieu, T. L. Phan, J. Phys. Chem. C 116 (2012) 25517-25524.
[37] L. Liu, Q. Peng, Y. Li, Inorg. Chem. 47 (2008) 3182-3187.
[38] M. G. Berrettini, G. Braun, J. G. Hu, G. F. Strouse, J. Am. Chem. Soc. 126 (2004) 7063-7070.
[39] X. Chen, A. C. Samia, Y. Lou, C. Burda, J. Am. Chem. Soc. 127 (2005) 4372-4375.
[40] S. J. Lim, B. Chon, T. Joo, S. K. Shin, J. Phys. Chem. C 112 (2008) 1744-1747.
[41] D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, A. P. Alivisatos, Nature 430 (2004) 190-195.
[42] R. Islam, D. Rao, J. Electron. Spectrosc. 81 (1996) 69-77.
[43] H. Seyama, M. Soma, J. Chem. Soc., Faraday Trans. 1 80 (1984) 237-248.
[44] J. Hammond, S. Gaarenstroom, N. Winograd, Anal. Chem. 47 (1975) 2193-2199.
[45] E. Agostinelli, C. Battistoni, D. Fiorani, G. Mattogno, M. Nogues, J. Phys. Chem. Sol. 50 (1989) 269-272.
[46] C. D. Wagner, L. H. Gale, and R. H. Raymond, Anal. Chem. 51 (1979 ) 466-482.
[47] C. H. Kim, S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov, S. H. Jin, ACS Nano 5 (2011) 3319-3325.
[48] A. Baba, N. Aoki, K. Shinbo, K. Kato, F. Kaneko, ACS Appl. Mater. Inter. 3 (2011) 2080-2084.
[49] W. Shockley, H. Queisser, Appl. Phys. 32 (1961) 510-519.
[50] N. C. Greenham, X. Peng, A. P. Alivisatos, Phys. Rev. B 54 (1996) 17628-17637.
[51] M. Skompska, Synthetic. Met. 160 (2010) 1-15.
[52] L. Wang, Y. Liu, X. Jiang, D. Qin, Y. Cao, J. Phys. Chem. C 111 (2007) 9538-9542.
[53] B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, N. C. Greenham, J. Appl. Phys. 97 (2005) 014914-014916.
[54] S. Roy, A. Aguirre, D.A. Higgins, V. Chikan, J. Phys. Chem. C 116 (2012) 3153-3160.
[55] D. Ginger, N. Greenham, Phys. Rev. B 59 (1999) 10622-10629.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明