博碩士論文 100329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.223.125.219
姓名 林子傑(Tzu-chien Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鍺誘發二氧化鈦奈米線成長機制及其應用之研究
(Germanium Enhanced Titanium Dioxide Nanowires Growth Mechanism and its Applications)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去十幾年裡,因為二氧化鈦有著優異的特性,例如:低成本、化學穩定性、無毒、良好的催化效應等,而被廣泛的研究。除此之外,一維的二氧化鈦奈米線可以提供較大的面積讓電子電洞對做結合以及在一維方向上傳遞電子並結合,這使二氧化鈦奈米線常常被應用在觸媒、感測器、染料敏化太陽能電池、鋰電池等等。而在製備二氧化鈦奈米線主要有兩種最為普遍的方式,分別為水熱法以及利用熱蒸鍍的方式配合固-液-氣的成長機制來做製備,雖然以水熱法製備二氧化鈦奈米線是相對簡單,反應的溫度只需要100℃左右的溫度就能完成反應,但在低溫下完成的奈米線,其結晶度是不足的,必須經過後續複雜的處理來改善結晶性的問題。除此之外,利用固-液-氣的成長機制來製備二氧化鈦奈米線必須先利用金屬催化物幫助奈米線的元素產生共析現象,才有辦法完成奈米線的成長,會使得奈米線的頭部會殘留金屬催化物,而這樣的殘留物會造成奈米線的導電率與能隙的改變,破壞了材料原有的特性。
在本論文中提出了一種利用元素鍺做為催化物誘發二氧化鈦奈米線,以直接的方式成長含有大範圍、均勻性高且不含金屬催化物殘留的二氧化鈦奈米線並討論不同厚度的鍺以及不同溫度下對奈米線成長造成的影響。藉由實驗結果得知材料的結構總共包含的四大部分,有頂部至底部分別為:二氧化鈦奈米線、二氧化鈦晶粒層、二氧化鍺晶粒層以及最底部的鈦金屬板。在二氧化鈦奈米線成長機制的探討會利用X-ray繞射分析儀、掃描式電子顯微鏡、穿透式電子顯微鏡以及拉曼光譜分析材料的成分分佈、晶體結構、試片表面形貌以及奈米線的表面形貌,進而得知鍺元素在實驗中扮演的角色。
本論文最後量測二氧化鈦奈米線的場發性質、光催化性質以及潤濕性,讓人意外的,二氧化鈦奈米線有著相當不錯的場發性質,而在光催化性質以及潤濕性也得到良好性質,皆有著不錯的表現。
摘要(英) Titanium dioxide has been widely studied over the past decades owing to its excellent properties of low cost, chemical stability, nontoxicity, catalysis and so on. Additionally, one-dimensional TiO2 nanowires can provide a large surface area for effectively collecting photons or electrons. Meanwhile, enabling charge transfer along single direction thus the facilitation of carrier collections. TiO2 nanowires are frequently used in catalysis, sensors, dye-sensitized solar cells, Li-ion batteries and so on. Among them, hydrothermal method and thermal evaporation with VLS mechanism are two typical synthetic methods for preparing TiO2 nanowires. However, hydrothermal method needs to be followed by complex post-treatment in order to improve the poor crystallinity. Using the VLS mechanism also remain the metal-catalysts on the top of TiO2 nanowires.
Therefore, this research investigated Ge to enhance directly synthesis of large scale, uniform, well-aligned and free-catalyst TiO2 nanowires on the Ti substrate at various temperatures and thickness of Ge layer by horizontal tube furnace. The material structure included the TiO2 nanowires, TiO2 layer, GeO2 layer and Ti foil. It shows that the growth mechanism of TiO2 nanowire substrates utilize the x-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and Raman spectroscopy, which pertain to the composition distribution, crystal structure, surface morphology and nanowire morphology to obtain the function of Ge in this research.
Finally, the results provided a new catalytic effect of Ge on the growth TiO2 process, which enhance directly synthesis of large scale, uniform, well-aligned and free-catalyst TiO2 nanowires on the Ti substrate. We figure out the function of Ge to play in the reaction. Additionally, the TiO2 nanowires display an outstanding field emission property, well photocatalytic activity and wettability.
關鍵字(中) ★ 二氧化鈦
★ 奈米線
★ 鍺
★ 場發效應
關鍵字(英) ★ TiO2
★ Nanowires
★ Ge
★ Field emission
論文目次 Contents
Abstract----------------------------------------------------------------------Ⅰ
摘要--------------------------------------------------------------------------- Ш
致謝----------------------------------------------------------------------------Ⅳ
Contents----------------------------------------------------------------------Ⅵ
Figure Captions ------------------------------------------------------------Ⅸ
Chapter 1 Introduction
1.1 Introduction of TiO2-------------------------------------------------------------- 1
1.2 Nanostructure of TiO2------------------------------------------------------------ 5
1.3 The fabrication and process of TiO2 nanowires----------------------------- 8
1.3.1 Hydrothermal method------------------------------------------------------- 8
1.3.2 Electrospinning--------------------------------------------------------------- 8
1.3.3 Thermal evaporation--------------------------------------------------------- 9
1.3.4 Chemical vapor deposition------------------------------------------------- 10
1.4 Application of TiO2 nanowires-------------------------------------------------- 11
1.4.1 Photocatalysis----------------------------------------------------------------- 11
1.4.2 Gas sensors-------------------------------------------------------------------- 12
1.4.3 Dye-sensitized solar cells--------------------------------------------------- 12
1.4.4 Photoelectrochemical water splitting-------------------------------------- 12
1.5 The overview of theory----------------------------------------------------------- 13
1.5.1 Photocatalytic properties of TiO2------------------------------------------ 13
1.5.2 Electron field emission properties----------------------------------------- 15
Chapter 2 Experimental Procedures and Characterization
2.1 Experimental Procedures for synthesizing TiO2 nanowires-------------- 16
2.1.1 Preparing TiO2 nanowires by two-step: electron beam evaporation and thermal evaporation-------------------------------------------------------- 16
2.1.2 Photocatalytic activity of TiO2 nanowires------------------------------- 21
2.1.3 Field emission property of TiO2 nanowires------------------------------ 21
2.1.4 The wettability of TiO2 nanowires---------------------------------------- 21
2.2 Characterization------------------------------------------------------------------- 22
2.2.1 Single-crystal x-ray diffraction ------------------------------------------- 22
2.2.2 Field Emission Scanning Electron Microscopy------------------------- 22
2.2.3 Transmission Electron Microscopy -------------------------------------- 22
2.2.4 Raman spectroscopy ------------------------------------------------------- 23
2.2.5 Field emission property analysis------------------------------------------ 23
2.2.6 Ultraviolet visible (UV-vis) spectrophotometer analysis--------------- 24
2.2.7 Contact angle analysis------------------------------------------------------ 24
Chapter 3 The growth mechanism of TiO2 nanowires by Ge enhancing
3.1 Motivation-------------------------------------------------------------------------- 26
3.2 Synthesis and Characterization TiO2 nanowires of Ge enhancing------ 28
3.2.1 Field Emission Scanning Electron Microscopy observation---------- 28
3.2.2 Single-crystal x-ray diffraction analysis---------------------------------- 37
3.3.3 Transmission Electron Microscopy observation------------------------ 42
3.3.4 Raman spectroscopy results------------------------------------------------ 46
3.3 Growth mechanism of Ge enhance the TiO2 nanowires------------------- 51
3.4 Conclusion-------------------------------------------------------------------------- 56
Chapter 4 The properties of TiO2 nanowires
4.1 Motivation-------------------------------------------------------------------------- 57
4.2 Field emission properties-------------------------------------------------------- 58
4.3 Photocatalytic activity------------------------------------------------------------ 61
4.4 Wettability-------------------------------------------------------------------------- 69
4.5 Conclusions------------------------------------------------------------------------- 72
Chapter 5 Future work
5.1 Semiconductor-Semiconductor Composite System------------------------- 73
5.2 Semiconductor-metal Composite System------------------------------------- 73
Reference-------------------------------------------------------------------- 74
參考文獻 References
Chapter 1 Introduction:
[1] U. S. Geological Survey, Mineral Commodity Summaries (2011) 172.
[2] H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem., 9 (1999) 2971.
[3] M. K. Mdgorzata and E. R. Richard, Chem. Mater., 5 (1993) 61.
[4] J. Zhu, D. Yang, J. Geng, D. Chen and Z. Jiang, J. Nanopart. Res., 10 (2008) 729.
[5] D. Reyes-Coronado, G. Rodrıguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss and G. Oskam1, Nanotechnology, 19 (2008) 145605.
[6] M. Landmann, E. Rauls and W. G. Schmidt, J. Phys. Condens. Matter, 24 (2012) 195503.
[7] D. C. Cronrmeyer, Phys. Rev., 87 (1952) 876.
[8] F. A. Grant, Rev. Mod. Phys., 31 (1959) 646.
[9] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, J. Appl. Phys., 75 (1993) 2042.
[10] M. G. Keith and R. C. James, Phys. Rev., B 46 (1992) 1284.
[11] K. J. Kim, D. B. Kurt, J. van de Lagemaat and A. J. Frank, Chem. Mater., 14 (2002) 1042.
[12] I. J. M. Colm, Ceramic science for materials technologists, Chapman and Hall, New York. 1983
[13] H. Tang, H. Berger, P. E. Schmid and F. Levy, Solid State Commun., 87 (1993) 847.
[14] H. Li, W. Zhang and W. Pan, J. Am. Ceram. Soc., 94 (2011) 3184.
[15] J. W. Ng, J. H. Pan and D. D. Sun, J. Mater. Chem., 21 (2011) 11844.
[16] B. Roland, D. Frank, Q. Jana and O. Marko, Lacer, 5 (2000) 157.
[17] J. Yu, J. C. Yu, W. Hoa and Z. Jiang, New J. Chem., 26 (2002) 607.
[18] H. S. Nalwa, “Handbook of nanotstucture materials and nanotechnology”, Academic press, New York, 2000.
[19] A. P. Neelesh, Langmuir, 20 (2004) 8209.
[20] Z. Topalian, Nanostructure Transition Metal Oxides in Cleantech Application, Uppsala University 2011.
[21] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, W. K. Thomas, F. Ronald and J. F. Robert, Nature, 405 (2000) 681.
[22] L. K. Tan, M. K. Kumar, W. W. An and H. Gao, ACS Appl. Mater. Inter., 2 (2010) 498.
[23] J. E. Boercker, E. Enache-Pommer and E. S. Aydil, Nanotechnology, 19 (2008) 095604.
[24] B. Cao, W. Yao, C. Wang, X. Ma, X. Feng and X. Lu, Mater. Lett., 64 (2010) 1819.
[25] J. Shi and X. Wang, Cryst. Growth Des., 11 (2011) 949.
[26] J. Wang, J. Sun and X. Bian, Mater. Sci. Eng., A 379 (2004) 7.
[27] W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri and S. Seraphin, Mater. Sci. Eng., B 131 (2006) 147.
[28] X. H. Yang, Z. Li, G. Liu, J. Xing, C. Sun, H. G. Yang and C. Li, Cryst. Eng. Comm., 13 (2011) 1378.
[29] A. D. Yoffe, Adv. Phys., 51 (2002) 799.
[30] X. Zhang, Z. B. Yao, L. Zhao, C. Liang, L. Zhang and Y. Mao, J. Electrochem. Soc., 148 (2001) G398.
[31] A. Kolmakov and M. Moskovits, Annu. Rev. Mater. Res., 34 (2004) 151.
[32] S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen and G. Z. Cao, Adv. Funct. Mater. , 12 (2002) 59.
[33] S. J. Limmer, T. P. Chou and G. Z. Cao, J. Mater. Sci., 39 (2004) 895.
[34] S. H. Nam, H. S. Shim, Y. S. Kim, M. A. Dar, J. G. Kim and W. B. Kim, ACS Appl. Mater. Inter., 2 (2010) 2046.
[35] N. M. Bedford and A. J. Steckl, ACS Appl. Mater. Inter., 2 (2010) 2448.
[36] S. A. Berhe, S. Nag, Z. Molinets and W. J. Youngblood, ACS Appl. Mater. Inter., 5 (2013) 1181.
[37] J. M. Wu, H. C. Shih and W. T. Wu, Nanotechnology, 17 (2006) 105.
[38] J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng and I. C. Chen, J. Cryst. Growth, 281 (2005) 384.
[39] A. M. Lazar, D. Chaumont, Y. Lacroute, M. E. Gómez, J. C. Caicedo, G. Zambrano and M. Sacilotti, Phys. Stat. Sol., A 205 (2008) 289.
[40] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang and L. D. Zhang, Chem. Phys. Lett., 365 (2002) 300.
[41] D. Li and Y. Xia, Nano Lett., 3 (2003) 555.
[42] M. M. Bergshoef and G. J. Vancso, Adv. Mater., 11 (1999) 1362.
[43] J. A. Matthews, G. E. Wnek, D. G. Simpson and G. L. Bowlin, Biomacromolecules, 3 (2002) 232.
[44] Z. M. Huang, Y. Z. Zhang, S. Ramakrishna and C.T. Lim, Polymer, 45 (2004) 5361.
[45] X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson, Nano Lett., 2 (2002) 1273.
[46] Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 13 (2003) 9.
[47] S. K. Pradhan, P. J. Reucroft, F. Yang and A. Dozier, J. Cryst. Growth, 256 (2003) 83.
[48] K. L. Choy, Progress in Materials Science, 48 (2003) 57.
[49] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemannt, Chem. Rev., 95 (1995) 69.
[50] J. Wang, Y. He, J. Tao, J. He, W. Zhang, S. Niu and Z. Yan, Chem. Commun., 46 (2010) 5250.
[51] J. Gong, Y. Li, Z. Hu, Z. Zhou and Y. Deng, J. Phys. Chem., C 114 (2010) 9970.
[52] W. C. Tian, Y. H. Ho, C. H. Chen and C. Y. Kuo, Sensors, 13 (2013) 865.
[53] Q. Li, G. Luo and J. Feng, Electroanalysis, 13 (2001) 359.
[54] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Lett., 7 (2007) 69.
[55] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 395 (1998) 583.
[56] J. Li, W. Wan, H. Zhou, J. Li and D. Xu, Chem. Commun., 47 (2011) 3439.
[57] Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng and W. Li, ACS. Nano., 4 (2010) 6515.
[58] L. Zhao, L. Hu, K. Huo, Y. Zhang, Z. Wu and P. K. Chu, Biomaterials, 31 (2010) 8341.
[59] S. Oh, C. Daraio, L. H. Chen, T. R. Pisanic, R. R. Finones and S. Jin, J. Biomed. Mater. Res., A 78 (2006) 97.
[60] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Lett., 11 (2011) 3026.
[61] A. L. Linsebigler, G. Lu and J. T. Yates, Jr., Chem. Rev., 95 (1995) 735.
[62] J. Huang and Q. Wan, Sensors, 9 (2009) 9903.
[63] B. Liu and E. S. Aydil, J. Am. Chem. Soc., 131 (2009) 3985.
[64] B. O’Regan and M. Gratzel, Nature, 354 (1991) 737.
[65] Aktra Fujishima and Kenichi Honda, Nature, 328 (1972) 37.
[66] A. Wold, Chem. Mater., 5 (1993) 280.
[67] A. Fujishima, K. Hashimoto and T. Watanabe, “TiO2 photocatalysis fundamentals and applications”, BKC. Inc. p. 80.
[68] R. H. Fowler, Dr. L. Nordheim (1928-05-01). "Electron Emission in Intense Electric Fields". Proceedings of the Royal Society of London, Retrieved 2009-10-26.
[69] Y. Xiong, Y. Xie, Z. Li and C. Wu, Chem. Eur. J., 9 (2003) 1645.
[70] C. X. Xu, X. W. Sun and B. J. Chen, Appl. Phys. Lett., 84 (2004) 1540.
[71] J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu and Z. L. Wang, Adv. Mater., 17 (2005) 2107.
[72] L. Li, F. Zong, Xi. Cui, H. Ma, X. Wu, Q. Zhang, Y. Wang, Fan Yang and J. Zhao, Mater. Lett., 61 (2007) 4152.
Chapter 2 Experimental Procedures and Characterization
[1] R. Loudon, Adv. Phys., (1964) 423.
[2] S. P. S. Porto, P. A. Fleury and T. C. Damen, Phys. Rev., 154 (1967) 522.
[3] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu and G. H. Ma, Appl. Surf. Sci., 253 (2007) 7497.
[4] H. T Chang, C. C. Wang, J. C. Hsu, M. T. Hung and P. W. Li et al., Appl. Phys. Lett., 102 (2013) 101902.
[5] A. C. Ferrari and J. Robertson, Phys. Rev., B 61 (2000) 14095.
[6] C. R. Crowbll, Solid-State Electron., 8 (1965) 395.
[7] R. Tadmor, Langmuir, 20 (2004) 7659.
[8] G. Whyman, E. Bormashenko and T. Stein, Chem. Phys. Lett., 450 (2008) 355.
Chapter 3 The growth mechanism of TiO2 nanowires by Ge enhanced
[1] X. Zhang, Z. B. Yao, L. Zhao, C. Liang, L. Zhang and Y. Mao, J. Electrochem. Soc., 148 (2001) G398.
[2] A. Kolmakov and M. Moskovits, Annu. Rev. Mater. Res., 34 (2004) 151.
[3] S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen and G. Cao, Adv. Funct. Mater., 12 (2002) 59.
[4] S. J. Limmer, T. P. Chou and G. Z. Cao, J. Mater. Sci., 39 (2004) 895.
[5] S. H. Nam, H. S. Shim, Y. S. Kim, M. A. Dar, J. G. Kim and W. B. Kim, ACS. Appl. Mater. Inter., 2 (2010) 2046.
[6] N. M. Bedford and A. J. Steckl, ACS. Appl. Mater. Inter., 2 (2010) 2448.
[7] S. A. Berhe, S. Nag, Z. Molinets and W. J. Youngblood, ACS. Appl. Mater. Inter., 5 (2013) 1181.
[8] J. M. Wu, H. C. Shih and W. T. Wu, Nanotechnology, 17 (2006) 105.
[9] J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng and I. C. Chen, J. Cryst. Growth, 281 (2005) 384.
[10] A. M. Lazar, D. Chaumont, Y. Lacroute, M. E. Gómez, J. C. Caicedo, G. Zambrano and M. Sacilotti, Phys. Stat. Sol., A 205 (2008) 289.
[11] J. E. Boercker, E. Enache-Pommer and E. S. Aydil, Nanotechnology, 19 (2008) 095604.
[12] W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri and S. Seraphin, Mater. Sci. Eng., B 131 (2006) 147.
[13] Z. G. Shang, Z. Q. Liuy, P. J. Shang and J. K. Shang, J. Mater. Sci. Technol., 28 (2012) 385.
[14] S. S. Amin, A. W. Nicholls and T. T. Xu, Nanotechnology, 18 (2007) 445609.
[15] J. Y. Ha, B. D. Sosnowchik, L. Lin, D. H. Kang and A. V. Davydov, Appl. Phys. Express, 4 (2011) 065002.
[16] J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer and L. J. Lauhon, Nature Nanotechnology, 3 (2008) 168.
[17] J. Yoo, Y. J. Hong, S. J. An, G. C. Yi and B. Chon et al., Appl. Phys. Lett., 89 (2006) 043124.
[18] K. J. Kim, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, Chem. Mater., 14 (2002) 1042.
[19] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater., 20 (2008) 54.
[20] B. H. Lee, M. Y. Song, S. Y. Jang, S. M. Jo, S. Y. Kwak and D. Y. Kim, J. Phys. Chem., C 113 (2009) 21453.
[21] R. A. Swalin, “Thermodynamics of solids”, second edition, John Wiley and Sons, Inc 1972, p. 98.
[22] W. F. Zhang, M. S. Zhang and Z. Yin, Phys. Stat. Sol., A 179 (200) 319.
[23] R. Loudon, Adv. Phys., (1964) 423.
[24] S. P. S. Porto, P. A. Fleury and T. C. Damen, Phys. Re., 154 (1967) 522.
[25] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu and G. H. Ma, Appl. Surf. Sci., 253 (2007) 7497.
[26] C. I. Lin, C. M. Tseng, Y. D. Lee, V. Yeh and Y. L. Huang, Nanotechnology, 22 (2011) 285707.
[27] H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung and P. W. Li et al., Appl. Phys. Lett., 102 (2013) 101902.
[28] A. C. Ferrari and J. Robertson, Phys. Rev., B 61 (2000) 14095.
[29] K. Huo, X. Zhang, L. Hu, X. Sun and J. Fu et al., Appl. Phys. Lett., 93 (2008) 013105.
[30] X. Peng and A. Chen, J. Mater. Chem., 14 (2004) 2542.
[31] Y. S. Park and J. S. Lee, Bull. Korean Chem. Soc., 32 (2011) 3571.
[32] B. D. Sosnowchik, H. C. Chiamori, Y. Ding, J. Y. Ha, Z. L. Wang and L. Lin, Nanotechnology, 21 (2010) 485601.
[33] V. Badescu, M. Momirlan, J. Cryst. Growth, 169 (1996) 309.
[34] F. Czerwinski and J. A. Szpunar, Micron, 29 (1998) 201.
[35] F. Gracia, J. P. Holgado, L. Contreras, T. Girardeau and A. R. Gonza´lez-Elipe, Thin Solid Films, 429 (2003) 84.
[36] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
[37] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. yin, F. Kim and H. Yan, Adv. Mater., 15 (2003) 353.
[38] H. Lee, S. Dregia, S. Akbar and M. Alhoshan, J. Nanomater., 2010 (2010) 1
[39] U. Diebold, Surf. Sci. Rep., 48 (2003) 53.
[40] W. W. Smeltzer, Mater. Sci. Forum, 29 (1988) 151.
[41] A. Kitiyanan, T. Kato, Y. Suzuki and S. Yoshikawa, J. Photochem. Photobiol., A 179 (2006) 130.
Chapter 4 The properties in TiO2 nanowires
[1] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys., 45 (1973) 487.
[2] D. Temple, Materials Science and Engineering R, 24 (1999) 185.
[3] S. H. Lai, K. P. Huang, Y. M. Pan, Y. L. Chen, L. H. Chan, P. Lin and H. C. Shih, Chem. Phys. Lett., 382 (2003) 567.
[4] C. X. Xu and X. W. Sun, Appl. Phys. Lett., 83 (2003) 3806.
[5] C. X. Xu, X. W. Sun and B. J. Chen, Appl. Phys. Lett., 84 (2004) 1540.
[6] M. C. Cotto-Maldonado, T. Campo, E. Elizalde, A. Gómez-Martínez, C. Morant and F. Márquez, J. Am. Chem. Sci., 3 (2013).
[7] D. Yu, R. Cai and Z. Liu, Spectrochim. Acta, Part A 60 (2004) 1617.
[8] C. Guo, J. Xu, Y. He, Y. Zhang and Y. Wang, Appl. Surf. Sci., 257 (2011) 3798.
[9] Y. Ma and J. N. Yao, J. Photochem. Photobiol., A 116 (1998) 167.
[10] C. Chen, W. Zhao, P. Lei, J. Zhao and N. Serpone, Chem. Eur. J., 10 (2004) 1956.
[11] P. X. Lei, C. C. Chen, J. Yang, W. H. Ma, J. C. Zhao and L. Zang, Environ. Sci. Technol., 39 (2005) 8466.
[12] G. Liu, Z. Chen, C. Dong, Y. Zhao, F. Li, G. Q. Lu and H. M. Cheng, J. Phys. Chem., B 110 (2006) 20823.
[13] S. Z. Chu, S. Inoue, K. Wada, S. Hishita and K. Kurashima, Adv. Funct. Mater., 15 (2005) 1343.
[14] J. Krysa, G. Waldner, H. Mestankova, J. Jirkovsky and G. Grabner, Appl. Catal., B 64 (2006) 290.
[15] R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem.,B 103 (1999) 2188.
[16] R. Mohammadi, J. Wassink, and A. Amirfazli, Langmuir, 20 (2004) 9657.
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明