博碩士論文 100329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:52.205.167.104
姓名 張永杰(Yung-Chieh Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
(On the structure and mechanical properties of Cu-Zn alloying micro pillars fabricated by continuous electrochemical plating monitored and guided with real-time imaging process)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以即時影像導引法自焦磷酸鹽鹼性鍍浴中,經連續式電鍍成功製備出直徑50 ~ 70 µm之銅鋅合金微柱,進而研究其結構及機械性質。改變微電鍍製程之實驗參數如電極間距(15、20、25、30 µm)、兩極間偏壓(4.3、4.4、4.5、4.6 V)和鍍浴中銅離子濃度(0.04、0.02、0.01、0.005 M),顯示其對製作合金微柱之結構、組成及機械性質具有影響。
理論上,可經由平板電極、微電極的陰極極化曲線的研究來求得銅、鋅共鍍析出合金的適當電位。所製得之合金微柱,可使用感應耦合電漿質譜儀(ICP-MS) 分析其組成、掃描式電子顯微鏡(SEM)觀察其形貌、X光繞射儀(XRD)解析其晶體結構與合金相,並以奈米壓痕儀與微拉伸試驗儀對其做機械性質的測試。
在微電鍍製程中,固定偏壓在4.4 V,若提升兩極間距(由15到30 µm),所得微柱之表面顆粒大小由195減小至80 nm,形貌則由粗糙轉變成平滑;微柱組成中鋅含量由23.51減低到14.34 at.%;機械性質,由奈米壓痕測得其硬度隨兩極間距增加而增大(間距在30 µm時硬度達3.11 GPa)。當兩極間距固定在25 µm下,偏壓若由4.3增加到4.6 V,則微柱成分中鋅含量由15.88增加到34.83 at.%,且硬度增加(偏壓在4.6 V下之硬度在3.51 GPa)。當兩極間距與偏壓分別固定在4.4 V 與 25 µm時,若鍍浴中銅離子濃度由0.005 增加到0.04M時,所得微柱之鋅含量、硬度與彈性模數明顯降低,在銅離子濃度為0.005 M時,所得微柱之含鋅量、硬度與彈性模數分別為43.30 at.%、3.79 GPa與92.14 GPa。
XRD分析得知: 微柱之晶體特徵峰屬於FCC結構的α相,隨組成中含鋅量的增加而逐漸向低角度偏移,當含鋅量達43.30 at.%時,微柱中有六方晶的ε相生成。
摘要(英) Copper-zinc (Cu-Zn) alloying micro pillars with their diameter in 50 ~ 70 µm were fabricated by continuous micro-electroplating in pyrophosphate bath under real-time monitoring and control. The effect of parameters such as the gap between electrodes (at 15, 20, 25 and 30 µm), the electrical bias between electrodes (at 4.3, 4.4, 4.5 and 4.6 V) and the copper concentration in the bath (at 0.04、0.02、0.01、0.005 M) on the surface morphology, composition, microstructure and mechanical property was investigated.
The potential used in electrochemical co-deposition of Cu and Zn was theoretically deduced from the cathodic polarization of the planar and column electrodes in Cu- and Zn-containing baths, respectively. Surface morphology of the alloying micro pillars was examined by SEM, their composition and microstructure were determined by ICP-MS and XRD, respectively. The mechanical properties were evaluated by nano indenting test and micro stress tensile test.
When the electrochemical deposition conducted at 4.4 V with increasing the gap between electrodes from 15 to 30 µm, the micro pillars fabricated revealed a smoother surface morphology (with decreasing their particles from 195 to 80 nm in diameter) and depict their composition decreasing the Zn content from 15.88 to 14.34 at.%, The mechanical property, determined by nano indentation, displayed an increase in hardness up to 3.11 GPa at an electrode gap of 30 µm. In the case that electrodeposition conducted at an electrode gap of 25 µm, the micro pillars tended to increase their Zn-content from 15.88 to 34.83 at.% with increasing the electrical voltage from 4.3 to 4.6 V, then the hardness increased up to 3.51 GPa at 4.6 V. In the case for the electrochemical deposition performed at 4.4 V with an electrode gap of 25 µm, the micro pillars was found to increase Zn-content and hardness in the alloy with decreasing the copper concentration from 0.04 to 0.005 M in the bath. The micro pillar was fabricated to contain 43.30 at.% Zn and reveal the hardness at 3.79 GPa, elastic modulus at 92.14 GPa.
According to XRD analysis, the micro pillars belong to α-phase brass in face-centered cubic (FCC) crystal. The characteristic peaks of this α-phase shifted to low angle with increasing the Zn-content and turned out to form ε-phase belonged to hexagonal structure as the Zn-content increased to a level at 43.30 at.%.
關鍵字(中) ★ 即時影像導引
★ 銅鋅合金微柱
★ 陰極極化
★ 焦磷酸鹽鍍浴
★ 奈米壓痕
關鍵字(英) ★ real-time monitoring and control
★ cathodic polarization
★ Cu-Zn alloying micro-pillar
★ pyrophosphate-based solution
★ nano indentation
論文目次 摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章、 前言 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 4
第二章、文獻回顧與原理學說 6
2-1 電鍍與合金電鍍原理 6
2-2 微電鍍製程之發展 9
2-3 銅鋅合金電鍍之發展 14
2-4 奈米壓痕試驗原理與其應用 17
第三章、實驗方法與設備 21
3-1 實驗流程 21
3-2 微陽極與陰極製作 22
3-3即時影像導引微電鍍平台 23
3-4 實驗方法 25
3-4-1 鍍浴調配 25
3-4-2 陰極極化掃描 26
3-4-3 銅鋅微柱電鍍 28
3-4-4 表面形貌觀察與EDS定性分析 30
3-4-5 ICP-MS定量分析 31
3-4-6 XRD合金相結構分析 31
3-4-7 奈米壓痕試驗 32
3-4-8 微拉伸試驗 33
第四章、 結果 35
4-1 陰極極化掃描 35
4-1-1 平板 35
4-1-2 微電極 36
4-2 SEM表面形貌觀察 39
4-2-1 改變兩極間距之結果 39
4-2-2 改變偏壓之結果 40
4-2-3 改變鍍浴中鋅銅離子比之結果 40
4-3 EDS定性分析 41
4-4 ICP-MS定量分析 41
4-5 XRD合金相結構分析 42
4-6 奈米壓痕測試 43
4-7 微拉伸試驗 44
第五章、討論 46
5-1 陰極極化掃描 46
5-2 SEM表面形貌觀察 47
5-3 ICP-MS定量分析 48
5-4 XRD合金相結構分析 49
5-5 奈米壓痕測試 50
5-6 微拉伸試驗 51
第六章、結論 53
參考文獻 54
參考文獻 [1] H. Guckel, Madison and Wis, “Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal Layers”, United States Patent 5190637, Mar.2, 1993.
[2] R. Bruck, K. Hahn, J. Steinecker, “Technology Description Methods for LIGA processes”, J. Micromech. Microeng, Vol.5, 1995, pp.196-198.
[3] L. Physik, “Laser LIGA-Excimer Laser Microstructuring and Replication”, Lambda Highlights No45, August 1994.
[4] M. Abraham, J. Arnold, W. Ehrfeld, K. Hesch, H. Mobius, T. Paatzsch, C. Schulz, “Laser-LIGA: A Cost Saving Process for Flexible Production of Micro-structures”, SPIE, Vol. 2639, 1995, pp.164-173.
[5] P. Rai-Choudhury editor, Handbook of Microlithography Micro-machining, and Micro-fabrication, Volume 1 and 2, IEE Materials and Devices series12 and 12B, 1997.
[6] T. Wallenberger and M. Boman, “Inorganic fibers and microstructures directly from the vapour phase”, Composites Science and Technology, Vol. 51, 1994, pp. 193-212.
[7] K. Ikuta, K. Hirowatari and T. Ogata, “Three dimensional micro integrated fluid system (MIFS) fabricated by stereo lithography”, Journal of Micro Electro Mechanical System, 1994, pp.1-6.
[8] Shoji Maruo and Satoshi Kawata, “Photopolymerization for Three-Dimensional Microfabrication”, vol. 7, No. 4,DEC. 1998, pp411-415.
[9] John D. Madden and Ian W. Hunter, Journal of micro-electro-mechanical systems. vol. 5 No.1, pp 24 – 32, 1996.
[10] 葉柏青, “微陽極導引電鍍與監測”,國立中央大學機械工程研究所碩士論文, 2003.
[11] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang, Journal of Micromechanics and Microengineering. 19, 015030, 2009.
[12] J. H. Yang, J. C. Lin, T. K. Chang, X. B. You and S. B. Jiang, Journal of Micromechanics and Microengineering. 19 025015, 2009.
[13] J. C. Lin, J. H. Yang, T. K. Chang and H. B. Jiang, Electrochimica Acta, volume 54, pp. 5703-5708, 2009.
[14] J. C. Lin, T. K. Chang , J. H. Yang , Y. S. Chen and C. L. Chuang, Electrochemical Acta, Vol. 55, Issue 6, February, pp. 1888-1894, 2010.
[15] 鄭家宏, “以微陽極導引電鍍法製作鎳銅合金銅微柱”, 國立中央大學機械工程研究所碩士論文, 2005。
[16] 曾耀田, “銅微柱表面之電化學析鍍氧化鋅奈米結構研究”, 國立中央大學材料科學與工程研究所碩士論文, 2012。
[17] Frederick A. Lowenheim, Modern Electroplating, third ed., John Wiley & Sons, New York, 1973.
[18] E. M. El-Giar and D.J. Thomson, Proceedings of 1997 Conference on Communications, Power and Computing; Winnipeg, MB; pp.327-332, May 22-23, 1997.
[19] E. M. El-Giar, R A Said, G E Bridges and D. J. Thomson, Journal of The Electrochemical Society, Vol. 147, Issue 2, pp. 586-591, 2000.
[20] S. H. Yeo and J. H. Choo, Journal of Micromechanics and Microengineering, Vol. 11, pp. 435 – 442, 2001.
[21] S. H. Yeo, J. H. Choo and K. H. A. Sim, Journal of Micromechanics and Microengineering, Vol. 12, pp. 271 – 279, 2001.
[22] S. K. Seol, J. M. Yi, X. Jin, C. C. Kim, J. H. Je, W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang and G. Margaritondo, Electrochemical and Solid-State Letter, Vol. 7, Issue 9, pp. C95-C97, 2004.
[23] S. K. Seol, J. T. Kim, J. H Je, Y. Hwu and G. Margaritondo, Electrochemical and Solid-State Letter, Vol. 10, Issue 5, pp. C44-C46, 2007.
[24] C. S. Lin, C. Y. Lee, J. H. Yang and Y. S. Huang, Electrochemical and Solid-State Letter, Vol. 8, Issue 9, pp. C125-C129, 2005.
[25] C. Y. Lee, C. S. Lin and B. R. Lin, Journal of Micromechanics and Microengineering, Vol. 18, 105008, 2008
[26] Jie Hu and Min-Feng Yu, Science, Vol. 329, No. 5989, pp. 313-316, 2010.
[27] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, Journal of Micromechanics and Microengineering, Vol. 15, 2405, 2005.
[28] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang, Journal of Micromechanics and Microengineering, Vol. 18, 055023, 2008.
[29] T. C. Chen, Y. R. Hwang, J. C. Lin and Y. J. Ciou, International Journal of Electrochemical Science, Volume 5, December, pp. 1810 – 1820, 2010.
[30] Y. R. Hwang, J. C. Lin and T. C. Chen, International Journal of Electrochemical Science, Vol. 7, pp. 1359 – 1370, 2012.
[31] Y. Fujiwara, H. Enomoto, Journal of The electrochemical Society, 147 (5), pp. 1840-1846, 2000.
[32] Stabrovsky, A. I. Zhur. Fiz. Khim., 26, pp. 949-955, 1952.
[33] Sree V. and T. L. Rama Char, J. Sci. Ind. Research (India), 16A, pp. 325-326, 1957.
[34] D. Page, S. Roy, J. PHYS. IV FRANCE 7 C5, pp. 269-274, 1997.
[35] K. Johannsen, D. Page, S. Roy, Electrochimica Acta 45, pp. 3691–3702, 2000.
[36] S. D. Beattie, J. R. Dahn, Journal of The Electrochemical Society, 150 (11), pp. C802-C806, 2003.
[37] L. F. Senna, S. L. Diaz, L. Sathler, Journal of Applied Electrochemistry 33, pp. 1155–1161, 2003.
[38] L. F. Senna, S. L. Diaz, L. Sathler, Materials Research, Vol. 8, No. 3, pp. 275-279, 2005.
[39] N. Haberkorn, M. Ahlers, F.C. Lovey, Scripta Materialia 61, pp. 821–824, 2009.
[40] F. L. G. Silva, D. C. B. D Lago, E. D. Elia, L. F. Senna, J Appl Electrochem 40, pp. 2013–2022, 2010.
[41] Y. Guan, X. Peng, Applied Surface Science 258, pp. 822–826, 2011.
[42] R. Juskenas, V. Karpaviciene, V. Pakstas, A. Selskis, V. Kapocius, Journal of Electroanalytical Chemistry 602, pp. 237–244, 2007.
[43] I. A. Carlos, M. R. H. D, Almeida, Journal of Electroanalytical Chemistry 562, 153–159, 2004.
[44] R. M. Krishnan, V. S. Muralidharan, S. R. Natarajan, Bull. Electrochem. 12, pp. 274, 1996.
[45] M. R. H. D. Almeida, E. P. Barbano, M. F. D. Carvalho, I. A. Carlos, J. L. P. Siqueira, L. L. Barbosa, Surface & Coatings Technology 206, pp. 95–102, 2011.
[46] W. D. Callister, Fundamentals of Materials Science and Engineering 7 Eds, Wiley, 2010.
[47] 丁志華、管正平、黃新言、戴寶通,奈米壓痕量測系統簡介,奈米通訊期刊,第九卷,第三期,第1~10頁。
[48] D. T. Sawyer, A. J. Sobkowiak, J. Roberts Jr., John Wiley & Sons, Electrochemistry for Chemists, Second Edition, NY (1995).
[49] G. W. C. Kaye , T. H. Laby, Tables of Physical Chemical Constants, 14th ed., Longman Group Ltd., London, 1973, p. 31.
[50] J. E. T. Andersen, G. B. Nielsen, P. Moller, Surface & Coatings Technology 70, pp. 87–95, 1994.
[51] 熊楚強,王月編著,“電化學”,文京圖書,1996。
[52] Denny A. Jones; Principes and prevention of corrosion; Prentice Hall, Upper Saddle River, 1996.
[53] T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary Alloys Phase Diagram, second ed., American Society for Metals, Metals Park, Ohio, 1990.
[54] A. A. Elmustafa, D. S. Stone, Materials Letters 57, p.1072–1078, 2003.
[55] N. X. Randalla, M. Vandammeb, F. J. Ulm, J. Mater. Res., Vol. 24, No. 3, p.679–690, 2009.
[56] E. Pellicer1, S. Pane, V. Panagiotopoulou, S. Fusco, K. M. Sivaraman, S. Surinach1, M. D. Baro1, B. J. Nelson, J. Sort, Int. J. Electrochem. Sci., Vol. 7, p.4014–4029, 2012.
[57] L. G. Silleen, A. E. Martell, J. Bjerrum, Stability constants of metal-ion complexes, Chemical Society, 1964.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明