博碩士論文 100329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.227.24.209
姓名 柯涼友(Liang-Yu Ke)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高壓氫壓縮機用之儲氫合金開發
(Development of Metal-Hydride for High-Pressure Hydrogen Thermal Compressor)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用電弧熔煉法,備製兩階段壓縮機用儲氫合金,分別為用於第一階段之La0.6Ce0.4Ni5+x (x=0~3)系合金、與用於第二階段之Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1)系合金,結果顯示在100℃下,氫氣壓力可從35atm被提升到400atm。
用於第一階段氫壓縮機的La基儲氫合金為La0.6Ce0.4Ni6 合金,由於Ce的取代,導致合金晶格體積縮小,加上額外Ni的析出物束縛效應,有效提升合金的吸放氫平台壓,經由第一階段的壓縮,可將20℃下壓力約為35atm的外加氫氣缸瓶升壓到在100℃下的120atm,此一La0.6Ce0.4Ni6作為第一階段氫壓縮合金,具有中等儲氫量(1.05wt%)、高放氫平台壓(26atm)及低遲滯效應(0.34)的優點。
而第二階段氫壓縮機的Ti基儲氫合金為Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4合金,以Ni部分取代較大原子的Mn及Cr,可使晶格體積略微縮小,導致吸放氫平台壓上升。可將第一階段所壓縮產生的氫氣,於20℃下,以77atm的壓力升壓到100℃下的400atm。此一Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4合金,具有高放氫平台壓(42.81atm)、高壓縮率(5.3)及低遲滯效應(0.32)的優點。
因為兩系合金各自有其特色與優點,La基合金具有低壓穩定迅速吸氫,以及高溫放氫較完全的特點,選用此系合金作為第一階段氫壓縮材料;Ti基合金,放氫平台壓高且遲滯效應小,適合於相對高壓進行吸氫動作,能迅速吸收氫氣,進而縮減二階段充氫時間,增進此二階段氫壓縮機效率,於100℃下提供400atm的高壓氫氣。
摘要(英) In this research, the hydrogen storage alloys of tow-stage compresser are prepared by arc-melting. There are La0.6Ce0.4Ni5+x (x=0~3) serious alloys and Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1) serious alloys, which will be used in first-atage and second-stage hydrogen thermal compressers respectively. The results show up that the pressure of hydrogen gas can be compressed from 35atm to 400atm under 100℃.
The La-based hydrogen storage alloy be used in the first-stage hydrogen thermal compresser is La0.6Ce0.4Ni6. By the substitution of Ce, the volume of the crystal unit cell is shrinkaged. In addition to the boundary effect of extra Ni priciptation will lift the adsorption and desorption plateau powerfully. Through first-stage compression, the commercial hydrogen gas can be compressed from 35atm(20℃) to 120atm(100℃). This La0.6Ce0.4Ni6 alloy, used in the first-stage hydrogen compresser, has medium hydrogen-storage quantity(1.05wt%)、high desorption plateau(26atm) and low hystersis effect(0.34).
And the Ti-based hydrogen storage alloy used in the second-stage hydrogen thermal compresser is Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4. By the Ni substitution of larger atoms such as Mn and Cr, the volume of the crystal unit cell will shrinkage lightly and lead the plateau pressure higher. The hydrogen gas produced from first-stage compresser can be compressed from 77atm(20℃) to 400atm(100℃). This Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4 alloy has advantages such as high desorption plateau(42.81atm)、high compression ratio(5.3) and low hysteresis effect(0.32).
The two systems of alloys have their own characteristics and advantages, the La based alloys can adsorb hydrogen stably and quickly under low pressure, and desorb hydeogen more completely at high temperature, so that choose this serious alloys to be the material of first-stage hydrogen compresser. The Ti based alloys have high desorption plateau and small hysteresis, and suitable to adsorb hydrogen gas quickly under relative high pressure. In addition to shorten the hydration time of the second stage and improve the efficiency to supply 400atm high pressure hydrogen gas under 100℃.
關鍵字(中) ★ 儲氫合金
★ LaNi5
★ XRD
★ PCI
關鍵字(英) ★ Hydrogen storage alloys
★ LaNi5
★ XRD
★ PCI
論文目次 目錄
一、 前言與文獻回顧 1
1.1儲氫合金的發展 1
1.2 儲氫合金吸放氫原理 2
1.3 儲氫合金種類與介紹 5
1.4 La-Ni系列儲氫合金 8
1.5 儲氫合金應用-氫壓縮機 10
1.6 金屬氫化物氫壓縮機用材料 11
1.7實驗目的 15
二、 實驗步驟與方法 16
2.1實驗流程 16
2.2真空電弧熔煉法(Vaccum Arc-Melting) 合金製備 16
2.3 X光粉末繞射分析 17
2.4合金微結構分析 17
2.5 合金儲放氫特性測試 18
2.6 氫壓縮測試 19
三、 金屬氫化物氫壓縮機設計 20
3.1 氫壓縮機系統介紹 20
3.2 自製金屬氫化物氫壓縮機系統 21
四、 實驗結果 26
4.1 La0.6Ce0.4Ni5+x (x=0,1,2 and 3)系合金 26
4.2 Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1)系合金 33
4.3 二階段式氫壓縮測試 37
五、 結論 41
六、 參考文獻 42
圖目錄
圖1.1 儲氫合金(a)吸氫(b)放氫的反應機制 3
圖1.2恆溫下壓力-組成曲線圖(PCI)示意圖 4
圖1.3 PCT曲線與Van’t Hoff定律的關係 5
圖1.4 La-Ni二元相圖 8
圖1.5 PDSC curves of the (A) LaNi5–H2 (B) LaNi6–H2 (C) LaNi8–H2 systems 9
圖1.6 P-C-I of LaNi5+x (x=0,1,3)at 313K 9
圖1.7金屬氫化物氫壓縮機原理示意圖:(a)Van’t Hoff曲線圖(b)理想儲氫合金PCI曲線圖 10
圖1.8 TiCrMn0.55Fe0.3V0.15及Ti0.95Zr0.05Cr1.2Mn0.8在20℃和60℃之PCI曲線圖 14
圖1.9二階段氫壓縮之Van’t Hoff曲線圖 15
圖2.1 真空電弧熔煉爐示意圖 17
圖3.1金屬氫化物氫壓縮機系統示意圖 20
圖3.2金屬氫化物氫壓縮機系統簡圖 22
圖3.3 金屬氫化物氫壓縮機反應腔體 22
圖3.4金屬氫化物氫壓縮機單階段氫壓縮示意圖 24
圖3.5金屬氫化物氫壓縮機單階段氫壓縮連續放氫模式示意圖 24
圖3.6金屬氫化物氫壓縮機二階段氫壓縮模式示意圖 25
圖4.1 La0.6Ce0.4Ni5+x (x=0,1,2 and 3)合金XRD分析圖 26
圖4.2 La0.6Ce0.4Ni5合金高倍率BEI之微結構圖 27
圖4.3 (a)高倍率與(b)低倍率下之La0.6Ce0.4Ni6合金BEI微結構 27
圖4.4(a)高倍率與(b)低倍率下之La0.6Ce0.4Ni8合金BEI微結構 28
圖4.5 (a)高倍率與(b)低倍率下之熱處理La0.6Ce0.4Ni5合金BEI微結構 29
圖4.6 (a)高倍率與(b)低倍率下之熱處理La0.6Ce0.4Ni6合金BEI微結構 29
圖4.7(a)高倍率與(b)低倍率下之熱處理La0.6Ce0.4Ni8合金BEI微結構 29
圖4.8 La0.6Ce0.4Ni5+x (x=0,1,2 and 3)系列合金20℃之PCI曲線圖 30
圖4.9 La0.6Ce0.4Ni6 合金20℃、50℃及100℃之PCI曲線圖 31
圖4.10 La0.6Ce0.4Ni5+x (x=0,1,2 and 3)系列合金20℃之吸放氫動力曲線圖 32
圖4.11 Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1)系列合金XRD分析圖 33
圖4.12 (a)高倍率與(b)低倍率下之Ti0.9Zr0.1Mn0.9Cr0.9Ni0.2合金BEI微結構 34
圖4.13 (a)高倍率與(b)低倍率下之Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4合金BEI微結構 34
圖4.14 Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1)系列合金20℃之PCI曲線圖 35
圖4.15 Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4 合金20℃及50℃之PCI曲線圖 36
圖4.16 Ti0.9Zr0.1Mn0.9-yCr0.9-yNi0.2+2y(y=0,0.1)系列合金20℃之吸放氫動力曲線圖 37
圖4.17 La0.6Ce0.4Ni6 於100℃下氫壓縮測試曲線圖 38
圖4.18 Ti0.9Zr0.1Mn0.8Cr0.8Ni0.4 於100℃下氫壓縮測試曲線圖 39
圖4.19 二階段氫壓縮Van’t Hoff曲線圖 39
表目錄
表1.1 各種儲存方式中體積密度的比較 2
表1.2 五種類型儲氫合金代表合金與吸放氫性質 5
表4.1 La基合金吸放氫平台壓 30
表4.2 Ti基合金吸放氫平台壓 35
參考文獻 1. 張嘉修,”生質氫能”,科學發展2009年1月,433期,32-35頁。
2. A. Zuttel, “Materials for Hydrogen Storage”, Materials Today, vol.6 (2003), pp.24-33.
3. G. Principi, F. Agresti, A. Maddalena, S. Lo Russo, “The problem of solid state hydrogen storage”, Energy, vol.34 (2009), pp.2087–2091.
4. U. Eberle, G. Arnold, R.Von Helmolt, “Hydrogen storage in metal-hydrogen systems and their derivatives”, Journal of Power Sources, vol.154 (2006), pp.456-460.
5. M. Jurczyk, “Hydrogen storage properties of amorphous and nanocrystalline MmNi4.2Al0.8 alloys”, Journal of Alloys and Compounds, vol.307 (2000), pp.279-282.
6. F. Laurencelle, Z. Dehouche, J. Goyette, T.K. Bose, “Integrated electrolyser-metal hydride compression system”, International Journal of Hydrogen Energy, vol.31 (2006), pp.762-768.
7. G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, vol.293-295 (1999), pp.877-888.
8. M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys”, Journal of Alloys and Compounds, vol.238 (1996), pp.193-201.
9. A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, “LiBH4 a new hydrogen storage material”, Journal of Power Sources, vol.188 (2003), pp.1-7.
10. Louis Schlapbach, Andreas Züttel, “Hydrogen-storage materials for mobile applications”, Nature, vol.414(2001), pp.353-358.
11. J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25(1970), pp.133-140.
12. Yu. F. Shmal’ko, A.I. Ivanovsky, M.V. Lototsky, L.V. Karnatsevich, Yu. Ya. Milenko, “Cryo-hydride High-Pressure Hydrogen Compressor”, Int. J. Hydrogen Energy, vol.24(1999), pp.649-650.
13. B. K. Singh, A. K. Singh, A. M. Imam, O. N. Srivastava, “On the Structural Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage Material”, Int. J. Hydrogen Energy, vol.26(2001), pp.817-821.
14. Y. Moriwaki, T. Gamo, T. Iwaki, “Control of hydrogen equilibrium pressure for C14-type laves phase alloys”, J. Less-Common Met., vol. 172(1991), pp.1028-1035.
15. J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorg. Chem., vol.13(1974), pp.218-222.
16. Hiroshi Nagai, Katsu Kitagaki, Keiichiro Shoji, “Microstructure and Hydriding Characteristics of FeTi Alloys Containing Manganese”, J. Less-Common Met, vol.134(1987), pp.275-286.
17. S.M. Lee, T.P. Perng, “Effect of the Second Phase on the Initiation of Hydrogenation of TiFe1−xMx (M = Cr,Mn) Alloys”, Int. J. Hydrogen Energy, vol.19(1994), pp.259-263.
18. K. Oguro, Y. Osumi, H. Suzuki, A. Kato, Y. Imamura, H. Tanaka, “Hydrogen Storage Properties of TiFe1−xNiyMz Alloys”, J. Less-Common Met, vol.89(1983), pp.275-279.
19. J.J. Reilly, R.H. Wiswall, “Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem., vol.7(1968), pp.2254-2256.
20. Chang Dong Yim, Bong Wun You, Young Sang Na, Jong Soo Bae, “Hydriding Properties of Mg-xNi Alloys with Different Microstructures”, Catalysis Today, vol.120(2007), pp.276-280.
21. A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel, F. Stucki “Surface Analysis of Mg2Ni---Mg, Mg2Ni and Mg2Cu”, J. Less-Common Met., vol.73(1980), pp.193-199.
22. T. Yamamoto, H. Inui, M. Yamaguchi, “Effect of lattice defects on hydrogen absorption-desorption pressures in LaNi5”, Materials Science and Engineering A, vol.329-331(2002), pp.367-371.
23. K. Asano, Y. Yamazaki, Y. Iijima, “Hydriding and dehydriding processes of LaNi5-xCox (x=0-2) alloys under hydrogen pressure of 1-5MPa”, Intermetallics, vol.11(2003), pp.911-916.
24. T. Yamamoto, H. Inui, M. Yamaguchi, K. Sato, S. Fujitani, I. Yonezu, K. Nishio, “Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8~83.2at%Ni”, Acta mater, vol.45 (1997), pp.5213-5221.
25. M. Palumbo, J. Urgnani, D. Baldissin, L.Battezzati, M. Baricco, “Thermodynamic assessment of the H-La-Ni system”, Computer Coupling of Phase Diagrams and Thermochemistry, vol.33(2009), pp.162-169.
26. Masayuki Kondo, Kohta Asano, Yoshiaki Iijima, “ Effect of nickel addition and microstructure on absorption and desorption behavior of hydrogen in LaNi5,” Journal of Alloys and Compounds, vol.393 (2005), pp.269–273.
27. E.P. Da Silva, “Industrial prototype of a hydrogen compressor based on metallic hydride technology”, Int. J. Hydrogen Energy, vol.18(1993), pp.307-311.
28. P. Muthukumar, M. Prakash Maiya, S. Srinivasa Murthy, “Experiments on a metal hydride based hydrogen compressor”, Int. J. Hydrogen Energy, vol.30(2005), pp.879-892.
29. X. H. Wang, Y.Y. Bei, X.C. Song, G.H. Fang, S.Q. Li, C.P. Chen, Q.D. Wang, “Investigation on high-pressure metal hydride hydrogen compressors”, Int. J. Hydrogen Energy, Vol.32, pp.4011-4015, 2007.
30. M. T. Hagström, J. P. Vanhanen, P. D. Lund, “AB2 metal hydrides for high-pressure and narrow temperature interval applications”, J. Alloys Comp., vol.269(1998), pp.288-293.
31. Xinhua Wang, Rugan Chen, Yan Zhang, Changpin Chen, Qidong Wang, “Hydrogen storage alloys for high-pressure suprapure hydrogen compressor”, J. Alloys Comp., vol.420(2006), pp.322-325.
32. F. Laurencelle, Z. Dehouche, J. Goyette, T.K. Bose, “Integrated electrolyser—metal hydride compression system”, Int. J. Hydrogen Energy, vol.31(2006), pp.762-768.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2013-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明