博碩士論文 100329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.217.208.72
姓名 徐淑萍(Shu-Ping Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
(The Effect of Mn Addition on the Promotion of Oxygen Reduction Reaction Performance for PtCo/C Catalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目標為利用沉澱沉積法(deposition-precipitation, DP)製備不同鉑/鈷組成的鉑鈷合金觸媒以應用於氧化還原反應 (oxygen
reduction reaction, ORR),並添加錳作改質劑以期能提升ORR活性。所製備觸媒之合金相、表面組成、化學組成、微結構、形貌以及電催化活性分析分別使用X光繞射儀(X-ray diffraction, XRD), 光電子能譜儀(X-ray photoelectron spectroscopy, XPS), 感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer,ICP-AES), X光吸收光譜(X-ray absorption spectroscopy, XAS), 高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy,HRTEM) 以及旋轉盤電極(rotating disc electrode, RDE)等儀器做鑑定。
本研究分為兩部分,第一部分為製備金屬負載量為38 wt %的鉑鈷
合金觸媒,鉑/鈷組成分別為99/1, 90/10和75/25且命名為PtCo-0,
PtCo-1和PtCo-2。其中,PtCo-2之於其他觸媒有最好的ORR活性,此
乃由於PtCo-2有最高的鈷合金度。但在加速穩定度測試accelerated
durability test, ADT)後,PtCo-1相較其他觸媒呈現最佳ORR活性,此現象說明高鈷含量的成分組成在長時間測試下易使得鈷溶解和鉑產生Ostwald ripening,因此不利於活性。
ii
第二部分用0.4和3.2 wt%的錳作改質劑添加於金屬負載量38 wt %
的鉑鈷觸媒,且分別命名為Mn-1和Mn-2,此外,亦製備不同鉑/錳組
成(97/3和79/21)的鉑錳合金觸媒,並命名為PtMn-1和PtMn-2。錳改質的鉑鈷觸媒為面心立方(face centered cubic, fcc)結構,鉑/鈷原子比為3.5且顆粒大小均為3.0 nm。在ORR活性的表現上,錳改質的鉑鈷觸媒相較於鉑鈷、鉑錳以及商用材鉑觸媒均有較佳的ORR活性,在加速穩定測試後,Mn-2仍表現最佳ORR活性,其效能約為商用材鉑觸媒活性之420 %。錳改質的鉑鈷觸媒係由於存在著鄰近鉑的氧化鈷/錳,其排斥吸附於鉑上的氫氧基使得氫氧基從鉑上脫去增加鉑的活性面積。此外,從XAS分析可以鑑定鉑鈷和錳改質鉑鈷觸媒之鉑的未填滿d軌域以及與鈷/錳混成程度,其結果相似。因此,Mn-2之所以能有效提升ORR效能其主因為富鉑之表面結構、高的鉑利用率以及ORR過程
中最佳的電子轉移數。
摘要(英) In this study, PtCo/C alloy catalysts with varying Pt/Co ratios are prepared by the deposition-precipitation (DP) method for the oxygen reduction reaction (ORR). The effect of Mn addition on the promotion of their ORR performance is investigated. The phases, surface compositions, chemical compositions, fine structures, morphologies and electrochemical properties of prepared catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XAS), high resolution transmission electron microscopy
(HRTEM) and rotating disc electrode (RDE) technique, espectively.
The study is divided into two parts. In the first part, the 38 wt % of PtCo/C alloy catalysts with the Pt/Co ratios of 99/1, 90/10 and 75/25 (denoted as PtCo-0, PtCo-1 and PtCo-2) are prepared. A significant enhancement of ORR activity for PtCo-2 is noted, which is due to the highly degree of Co alloying. After accelerated durability test (ADT), PtCo-1 presents the best performance among all catalysts, suggesting that high Co contents result in obvious dissolution of the non-noble metal and Ostwald ripening of Pt during long term tests.
In the second part, the 38 wt % of PtCo/C catalysts modified with 0.4 and 3.2 wt% of Mn (denoted as Mn-1 and Mn-2) and PtMn/C alloy catalysts with the Pt/Mn ratios of 97/3 and 79/21 (denoted as PtMn-1 and
PtMn-2) are prepared. For the Mn-modified PtCo/C catalysts, the Pt/Co atomic ratio is 3.5 and the size is about 3.0 nm with the same face centered cubic (fcc) structure. Moreover, the ORR activity of
Mn-modified PtCo/C catalysts is both higher than that of PtCo/C, PtMn/C and commercial Pt/C catalysts. After ADT of 1700 cycles, Mn-2 with 3.2 wt% Mn addition still presents the best ORR mass activity, which is
about 420 % of commercial Pt/C. In the Mn-modified PtCo/C system, due to the existence of the neighboring Co and/or Mn oxide, there is OH repulsion between Pt-OH and these non-noble metal hydroxides or oxides, decreasing the OH coverage on Pt and increasing the number of free Pt
active sites. Besides, based on the XAS analysis, the unfilled d-orbital values and extent of hybridization of Pt and Co/Mn of the PtCo and
Mn-modified samples are very similar. Therefore, the promotional effect on ORR performance of Mn-2 is attributed to the most enhanced Pt-skin structure, highest Pt usage, and comparable electron transfer number
during ORR instead of changes in d-orbital vacancy and alloying degree.
關鍵字(中) ★ PtCo/C 觸媒
★ 錳
★ 氧氣還原反應
★ 電子轉移數
★ X 光吸收 光譜
★ 加速穩定度測試
關鍵字(英)
論文目次 摘要................................................................................................... i
Abstract .................................................................................................. iii
Acknowledgement ...................................................................................v
Table of Contents ................................................................................... vii
List of Figures .......................................................................................... ix
List of Tables ........................................................................................... xii
Chapter 1 Introduction .......................................................................... 1
1.1 Mechanism of ORR ..................................................................... 2
1.2 Catalysts for ORR ....................................................................... 4
1.3 PtCo/C catalysts ......................................................................... 9
1.4 Mn modifier .............................................................................. 12
1.5 Correlation between fine structure and ORR activity .............. 14
1.6 Motivation and approach ......................................................... 16
Chapter 2 Experimental Section ........................................................ 17
2.1 Preparation of catalysts ............................................................ 17
2.1.1 Preparation of PtCo/C catalysts ....................................... 17
2.1.2 Preparation of Mn-modified PtCo/C and PtMn/C catalysts
................................................................................................... 17
2.2 Characterization of catalysts .................................................... 22
2.2.1 X-ray diffraction (XRD) .................................................. 22
2.2.2 Inductively coupled plasma-atomic emission spectrometer
(ICP-AES) ................................................................................. 22
2.2.3 X-ray photoelectron spectroscopy (XPS) ........................ 22
viii
2.2.4 X-ray absorption spectroscopy (XAS) ............................ 24
2.2.5 High resolution transmission electron microscopy
(HRTEM) .................................................................................. 26
2.2.6 Rotating disk electrode (RDE) ........................................ 26
2.2.7 Accelerated durability tests (ADT) .................................. 28
Chapter 3 Results and Discussion ...................................................... 29
3.1 The ORR activity enhancement of PtCo/C catalysts ............. 29
3.1.1 The surface and structural analyses ................................. 29
3.1.2 The electrochemical characterizations ............................. 33
3.2 The ORR activity enhancement of Mn-modified PtCo/C
catalysts .................................................................................... 42
3.2.1 The composition and structural analyses ......................... 42
3.2.2 The electrochemical characterizations ............................. 55
Chapter 4 Conclusions ......................................................................... 65
References ................................................................................................ 67
參考文獻 67
References
[1] W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157
(2010) B1529-B1536.
[2] E. Antolini, J. R. C. Salgado, E. R. Gonzalez, J. Electroanal. Chem.
580 (2005) 145-154.
[3] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin,
T. Bligaard, H. Jo´nsson, J. Phys. Chem. B 108 (2004) 17886-17892.
[4] T. R. Ralph, M. P. Hogarth, Platinum Metals Rev. 46 (2002) 3-14.
[5] T. R. Ralph, M. P. Hogarth, Platinum Metals Rev. 46 (2002) 117-135.
[6] T. R. Ralph, M. P. Hogarth, Platinum Metals Rev. 46 (2002) 146-164.
[7] O. Antoine, Y. Bultel, R. Durand, J. Electroanal. Chem. 499 (2001)
85-94.
[8] J. Bockris, S. Khan, Phenomenological electrode kinetics. In: Surface
electrochemistry: a molecular level approach. New York: Plenum
Press (1993) 211-409.
[9] F. Jaouen, J. P. Dodelet, J. Phys. Chem. C 113 (2009) 15422-15432.
[10] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A.
Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nature Mater. 6 (2007)
241-247.
[11] W. Bi, Gary E. Gray, T. F. Fuller, Electrochem. Solid-State Lett. 10
(2007) B101-B104.
[12] P. Yu, M. Pemberton, P. Plasse, J. Power Sources 144 (2005) 11-20.
[13] S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. McBreen, J.
Electrochem. Soc. 142 (1995) 1409-1422.
[14] X. Yu, S. Ye, J. Power Sources 172 (2007) 133-144.
68
[15] B. C. Beard, P.N. Ross, J Electrochem Soc. 137 (1990) 3368-3374.
[16] J. R. C. Salgado, E. Antolini, E. R. Gonzalez, Appl.Catal. B: Environ.
57 (2005) 283-290.
[17] M. T. Paffett, G.J. Berry, S. Gottesfeld, J Electrochem. Soc. 135
(1988) 1431-1436.
[18] V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M.
Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int.
Ed. 45 (2006) 2897-2901.
[19] J. L. Ferna´ndez, D. A. Walsh, A. J. Bard, J. Am. Chem. Soc. 127
(2005) 357-365.
[20] H. R. Col´on-Mercado, B. N. Popov, J. Power Sources 155 (2006)
253-263.
[21] J. R. C. Salgado, E. Antolini, E. R. Gonzalez, J. Phys. Chem. B 108
(2004) 17767-17774.
[22] H. Yano, J. M. Song, H. Uchida, M. Watanabe, J. Phys. Chem. C 112
(2008) 8372-8380.
[23] K. J. J. Mayrhofer, K. Hartl, V. Juhart, M. Arenz, J. Am. Chem.
Soc.131 (2009)16348-16349.
[24] B. J. Hwang, S. M. S. Kumar, C. H. Chen, Monalisa, M. Y. Cheng, D.
G. Liu, J. F. Lee, J. Phys. Chem. C 111 (2007) 15267-15276.
[25]F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J.
Hwang, Chem. Eur. J. 16 (2010) 4602-4611.
[26] K. J. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew.
Chem. Int. Ed. 48 (2009) 3529-3531.
[27] E. Antolini, J. R. C. Salgado, E. R. Gonzalez, J. Power Sources 160
(2006) 957-968.
69
[28] M. Ammam, E. B. Easton, J. Electrochem. Soc. 159 (2012)
B635-B640.
[29] C. Xu, Y. Su, L. Tan, Z. Liu, J. Zhang, S. Chen, S. Ping Jiang,
Electrochim. Acta 54 (2009) 6322-6326.
[30] Y. Kang, C. B. Murray, J. Am. Chem. Soc. 132 (2010) 7568-7569.
[31] A. Kongkanand, Z. Liu, I. Dutta, F. T. Wagner, J. Electrochem. Soc.
158 (2011) B1286-B1291.
[32] H. Li, K. Tsay, H. Wang, S. Wu, J. Zhang, N. Jia, S. Wessel, R.
Abouatallah, N. Joos, J. Schrooten, Electrochim. Acta 55 (2010)
2622-2628.
[33] M. K. Debe, R. Atanasoski, Annual Progress Report. 861, DOE
Hydrogen Program, 2008.
[34] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R.
Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc. 127 (2005)
11140-11145.
[35]F. J. Lai, L. S. Sarma, H. L. Chou, D. G. Liu, C. A. Hsieh, J. F. Lee, B.
J. Hwang, J. Phys. Chem. C 113 (2009) 12674-12681.
[36] F. J. Lai, H. L. Chou, L. S. Sarma, D. Y. Wang, Y. C. Lin, J. F. Lee, B.
J. Hwang, C. C. Chen, Nanoscale 2 (2010) 573-581.
[37] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller.
Phys. Rev. B 52 (1995) 2995-3009.
[38] S. Y. Ang, D. A. Walsh, Appl. Catal. B: Environ. 98 (2010) 49-56.
[39] D. Chu, S. Gilman, J. Electrochem. Soc. 141 (1994) 1770-1773.
[40] A. Sarkar, V. Murugan, A. Manthiram, Langmuir 26 (2010)
2894-2903.
[41] V. D. Noto, E. Negro, S. Lavina, S. Gross, G. Pace, Electrochim. Acta
70
53 (2007) 1604-1617.
[42] Q. Huang, H. Yang, Y. Tang, T. Lu, D. L. Akins, Electrochem.
Commun. 8 (2006) 1220-1224.
[43] A. R. Denton, N. W. Ashcroft, Phys. Rev. A 43 (1991) 3161-3164.
[44] V. Raghuveer, P. J. Ferreira, A. Manthiram, Electrochem. Commun. 8
(2006) 807-814.
[45] Y. C. Wei, C. W. Liu, W. J. Chang, K. W. Wang, J. Alloys Compd.
509 (2011) 535-541.
[46] L. Colmenares, H. Wang, Z. Jusys, L. Jiang, S. Yan, G.Q. Sun, R.J.
Behm, Electrochim. Acta 52 (2006) 221-233.
[47] W. Vogel, W. He, Q. H. Huang, Z. Zou, X. G. Zhang, H. Yang, Int. J.
Hydrogen Energy 35 (2010) 8609-8620.
[48] Y. C. Bai, W. D. Zhang, C. H. Chen, J. Q. Zhang, J. Alloys Compd.
509 (2011) 1029-1034.
[49] N. T. Barrett, R. Belldlou, J. Thiele, C. Guillot, Surf. Sci. 331-333
(1995) 776-781.
[50] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu,
Y. Xia, Science 324 (2009) 1302-1305.
[51] J. Luo, P. N. Njoki, Y. Lin, L. Wang, C. J. Zhong, Electrochem.
Commun. 8 (2006) 581-587.
[52] Y. C. Wei, C. W. Liu, Y. W. Chang, C. M. Lai, P. Y. Lim, L. D. Tsai,
K. W. Wang, Int. J. Hydrogen Energy 35 (2010) 1864-1871.
[53]J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis,
R. R. Adzic, J. Am. Chem. Soc. 127 (2005)12480-12481.
[54] F. H. B. Lima, W. H. Lizcano-Valbuena, E. Teixeira-Neto, F. C. Nart,
E. R. Gonzalez, E. A. Ticianelli, Electrochim. Acta 52 (2006)
71
385-393.
[55] K. Jayasayee, V. A. T. Dam, T. Verhoeven, S. Celebi, F. A. de Bruijn,
J. Phys. Chem. C 113 (2009) 20371-20380.
[56] B. E. Warren, X-ray Diffraction, Dover Publications, Inc., New York,
1990.
[57] M. Ammam, L. E. Prest, A. D. Pauric, E. B. Easton, J. Electrochem.
Soc. 159 (2011) B195-B200.
[58]Y. W. Tsai, Y. L. Tseng, L. S. Sarma, D. G. Liu, J. F. Lee, B. J. Hwang,
J. Phys. Chem. B 108 (2004) 8148-8152.
[59] S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. Phys. Chem. 99 (1995)
4577-4589.
[60] M. Bron, S. Fiechter, M. Hilgendorff, P. Bogdanoff, J. Appl.
Electrochem. 32 (2002) 211-216.
[61] T. J. Schmidt, H. A. Gasteiger, G. D. Stäb, P. M. Urban, D. M. Kolb,
R. J. Behm, J. Electrochem. Soc. 145 (1998) 2354-2358.
[62] X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, J. Power Sources 158
(2006) 154-159.
指導教授 王冠文 審核日期 2013-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明