博碩士論文 100329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.14.246.254
姓名 許凱迪(Kai-Ti Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究
(Zirconium doping effect on the microstructure and properties of SrCe1-xZrxO3−δ (0.0≦x≦0.5) hydrogen transport membrane)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究
★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於鍶鈰氧化物具有高的質子與電子導電率與低的活化能,因此可應用於氫氣傳輸透膜 (HTM)之材料。HTM對氫氣具有通透性,可用於分離純化煤碳、石灰石等石化燃料氣體中之氫氣。因此HTM材料必需對環境中的一氧化碳、二氧化碳及硫化物需具有良好的化學穩定性,並且由適當的微結構設計以提供足夠的機械強度。本研究利用固相反應法來製備SrCe1-xZrxO3−δ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5)質子導體氧化物,探討鋯含量的添加對其燒結行為、化學穩定性與導電性影響之研究。X光繞射儀、掃描式電子顯微鏡來鑑定晶體結構、觀察表面形貌。隨著Zr摻雜含量增加,破斷面由封閉性孔洞轉變成開放性孔洞,燒結不緻密,孔隙率增加。SrCe0.6Zr0.4O3-δ (SCZ0.4)呈現多孔結構,於1500℃燒結4小時,具有最低收縮率5.98%、最大吸水率7.09%與最大孔隙率26.80%。由對CO2化學穩定性的實驗分析得知,隨著Zr摻雜含量增加,SrCe1-xZrxO3-δ (0≦x≦0.5)中之CeO2與SrCO3兩相峰值相對強度降低,Zr摻雜含量為SrCe0.8Zr0.2O3-δ (SCZ0.2)以上,穩定性即可獲得改善。另外由導電率分析顯示,SrCe1-xZrxO3-δ (0≦x≦0.5)系統之導電率隨著Zr摻雜含量的增加而降低。SCZ0.4多孔結構在HTM支撐層材料應用上具有相當的潛力。
摘要(英) Strontium cerium oxide can be applicated on hydrogen transport membranes (HTM) beacuse of their relativity high proton and electrical conductivities and lower activations energy. HTM have a permeability to hydrogen, using for separating and purifing hydrogen from coal and limestone of fossil fuels. Therefore, the good chemical stability in the enviroment of corbon monoxide, corbon dioxide and sulfides, and to provide suitable mechanical strength by apropriating microstrctures design. In this study, SrCe1-xZrxO3−δ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) proton-conducting oxides have been prepared using a solid state reaction method. The relationship between the Zr doping content and microstructure, sinterability, chemical ability and conductivity of these SrCe1-xZrxO3−δ (0.0≦x≦0.5) proton-conducting oxides. SrCe1-xZrxO3−δ (0.0≦x≦0.5) are studied systematically by using X-ray Diffraction for the microstructure identification, by Scanning Electron Microscopy for surface mohpology observation. The results of SEM observation on the morphology of fracture surface reveals the porosity of sintered oxides increases with increasing the Zr doping content. Since the Zr doping content would decrease the siterability, the closed pores tranferring into open pores can be seen on the fracture surface. In addition, the results of thermo dilatometer analysis present a shrinkage of 5.98% and water absorption of 7.09% and porosity of 26.80 % occured at the composition of SrCe0.6Zr0.4O3-δ (SCZ0.4) sintered at 1500℃for 4 hurs, respectively. The results of CO2 enviroment test reveals that the relative intensity of CeO2 and SrCO3 phases decreases with increasing the Zr content. This evidences that the chemical stability of SrCe0.8Zr0.2O3-δ (SCZ0.2) would improved by increasing Zr content. However th condutivity of SrCe1-xZrxO3−δ (0.0≦x≦0.5) oxides decreases with increasing the Zr doping content. As a result, SCZ0.4 is suggested to be a potential support layer material for HTM applications.
關鍵字(中) ★ 氫氣傳輸透膜
★ 燒結性
★ 化學穩定性
★ 導電率
★ 多孔支撐結構
關鍵字(英) ★ hydrogen transport membranes
★ sinterability
★ chemical stability
★ condutivity
★ porous support structure
論文目次 目錄
中文摘要....………………………………………………………………..……..i
英文摘要…………………………………………………………………..…….ii
致謝……………………………………………………………………..………iv
目錄……………………………………………………………………............viii
表目錄………………………………………………………………..................xi
圖目錄……………………………………………………………….................xii
第一章 前言..……….…………………………………………...……………...1
1-1 緒論……………………………………………………………………1
1-2 研究動機與目的…...………………………………………………......3
1-2-1 研究動機………………………………………………………..3
1-2-2 研究目的………………………………………………………..5
第二章 文獻回顧……..………………………………………………………...7
2-1 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)………………7
2-1-1 固態氧化物燃料電池的工作原理與機制………………….7
2-1-2 固態氧化物燃料電池電解質材料…………………………..10
2-1-2-1 固態氧化物燃料電池電解質材料之晶體結構……….....10
2-1-2-1-1 螢石結構 (Fluorite structure)…………………………11
2-1-2-1-1-1 摻雜氧化鋯 (ZrO2)………………………………..11
2-1-2-1-1-2 摻雜氧化鈰 (CeO2)…………………………….....11
2-1-2-1-2-3 鈣鈦礦材料 (Pervoskite structure)……………….12
2-1-3 固態氧化物燃料電池陽極材料………………………………12
2-1-4 固態氧化物燃料電池陰極材料………………………………14
2-2 氫氣傳輸膜 (Hydrogen Transport Membrane, HTM)………………17
2-2-1 氫氣傳輸膜的工作原理與機制…..…………………………19
2-2-1-1 氫氣傳輸膜的特性……..………………………………...20
2-2-2 鈣鈦狀結構 …………...….………..………………………..21
2-2-3 氫氣傳輸膜材料……………………………………………..21
2-2-4 氫氣傳輸膜支撐結構 (Support Structure)………………...24
第三章 實驗方法與步驟…………………………………………………….33
3-1 粉體與試片製備………….………………………………………….33
3-1-1 粉體的製備……...…………………………………………...33
3-1-2 坯體的製備………………………………………………......34
3-2 材料性質分析…………………………………………………….….35
3-2-1 X光繞射分析(XRD)……………………………………….35
3-2-2 粉體粒徑量測………………………………………………..35
3-2-3 熱膨脹儀分析(TDA)…………………………………………35
3-2-4 坯體收縮率、吸水率以及孔隙率量測………………………36
3-2-4-1 收縮率量測 (Shrinkage)…………………………………36
3-2-4-2 吸水率(Water Absorption)與孔隙率(Porosity)量測……..36
3-2-5 掃描式電子顯微鏡分析(SEM)………………………………37
3-3 化學穩定性分析………….………………………………………….38
3-4 導電率量測……………………...…………………………………….38
3-5 刮刀成型(Tape casting)……………………………………………….39
第四章 結果與討論…………………………………………………………...49
4-1 X光繞射分析………………………………………………………….49
4-2 粉體粒徑分析…………………………………………………………50
4-3 燒結行為分析…………………………………………………………50
4-3-1 熱膨脹儀分析………………………………………………....50
4-3-2 收縮率、吸水率與孔隙率分析………………………………51
4-4 SEM破斷面分析………………………………………………………53
4-5 化學穩定性分析………………………………………………………54
4-6 導電率分析……………………………………………………………57
4-7 刮刀成型………………………………………………………………58
第五章 結論…………………………………………………………………...85
參考文獻……………………………………………………………………….87
參考文獻 [1] A.D. J. Larminie, “Fuel cell system explained ”, 2003.
[2] 黃鎮江, 燃料電池, vol. 3, 滄海書局, 2008.
[3] Murray EP, Tsai T, Barnett SA, “A direct-methane fuel cell with aceria-based anode”, Nature, vol. 400, pp. 649-651, 1999.
[4] Chan SH, Ho HK, Tian Y, “Multi-level modeling of SOFC-gas turbinehybrid system”, Int J Hydrogen Energy, vol. 28, pp. 889-900, 2003.
[5] Haile SM, “Fuel cell materials and components”, Acta Marer, vol. 51, pp.5981-6000, 2003.
[6] Z.P. Shao, S.M. Haile, Nature, vol. 431, pp. 170–173, 2004.
[7] W. Zhou, Z.P. Shao, R. Ran, R. Cui, Electrochem. Commun.
[8] T. Ishihara, J.W. Yan, M. Shinagawa, H. Matsumoto, Electrochim. Acta, vol. 52, pp. 1645–1650, 2006.
[9] Shao ZP, Haile SM, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, vol. 431, 170-173, 2004.
[10] Yang L, Zuo CD, Wang SH, Cheng Z, Liu M, “A novel composite cathode for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater, vol. 20, pp. 3280-3283, 2008.
[11] Tan WY, Zhong Q, Miao MS, Qu HX, “H2S Solid oxide fuel cell based on a modified barium cerate perovskite proton conductor”, Ionics, vol. 15, pp. 385-388, 2009.
[12] K.D. Kreuer, Annu. Rev, Mater. Res, vol. 33, pp. 333–339, 2003.
[13] H. Yugami, Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics, vol. 79, pp. 171–176, 1995.
[14] J. Guan, E.D. Stephen, B. Uthamalingam, M.L. Liu, Solid State Ionics, 110, pp. 303–310, 1998.
[15] K. D. Kreuer, "Proton-conducting oxides," Annual Review of Materials Research”, vol. 33, pp.333-359, 2003.
[16] N. Bonanos, K.S. Knight, B. Ellis, Solid State Ionics, vol. 79, pp. 161–170, 1995.
[17] J. W. Phair and S. P. S. Badwal, "Review of proton conductors for hydrogen separation," Ionics, vol.12, pp. 103-115, Jul 2006.
[18] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics, vol. 34, pp. 359,1981.
[19] H. Uchida, H. Yoshidawa, H. Iwahara, Solid State Ionics, vol. 34, pp. 103, 1989.
[20] X. Qi, Y.S. Lin, “Electrical conduction and hydrogen permeation though mixed proton-electron conduting strorium cerate membranes”, Solid State Ionic, vol. 130, pp. 149-156, 2000.
[21] Chunwen Sun, Ulrich Stimming, “Rwviw: Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247–260, 2007.
[22] S. Mclntosh, R.J. Gorte, Chem. Rev., vol. 104, pp. 4845–4865, 2004.
[23] Tao, Z., Bi, L., Zhu, Z., Liu W., “Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells” Journal of Power Sources, vol. 194, No. 2, pp. 801-804, 2009.
[24] H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ion., vol. 83, pp. 1-16, 1996.
[25] C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L.Q. Chen, J. Phys. Chem. B, vol. 110, pp. 13445–13452, 2006.
[26] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B.
Johansson, Phys. Rev. Lett., vol. 89, 166601, 2002.
[27] KV Galloway and NM Sammes, “Fuel Cells – Solid Oxide Fuel Cells | Anodes”, Encyclopedia of Electrochemical Power Sources, pp. 17-24, 2009.
[28] N.M. Sammes, B.R. Roy,” FUEL CELLS – SOLID OXIDE FUEL CELLS | Cathodes”, Encyclopedia of Electrochemical Power Sources, pp.25–33, 2009.
[29] E. Ivers-Tiffée, “Electrolytes|Solid :oxygen ions”, Encyclopedia of Electrochemical Power Source, vol. , pp. 181-187, 2009.
[30] M. A. Rosen and D. S. Scott, “Comparative efficiency assessments for a range of hydrogen production processes”, International Journal of Hydrogen Energy, vol. 23, pp. 653-659, Aug 1998.
[31] H. Shiga, K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida, and E. Bilgen, “Large-scale hydrogen production from biogas”, International Journal of Hydrogen Energy, vol. 23, pp. 631-640, Aug 1998.
[32] M. Ashokkumar, “An overview on semiconductor particulate systems for photoproduction of hydrogen”, International Journal of Hydrogen Energy, vol. 23, pp. 427-438, Jun 1998.
[33] Y. S. Cheng, M. A. Pena, J. L. Fierro, D. C. W. Hui, and K. L. Yeung, “Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from Towngas mixture”, Journal of Membrane Science, vol. 204, pp. 329-340, Jul 15 2002.
[34] J. W. Phair and S. P. S. Badwal, “Review of proton conductors for hydrogen separation”, Ionics, vol. 12, pp. 103-115, Jul 2006.
[35] S. Adhikari and S. Fernando, “Hydrogen membrane separation Techniques”, Industrial & Engineering Chemistry Research, vol. 45, pp. 875-881, Feb 1 2006.
[36] S. Uemiya, “Brief review of steam reforming using a metal membrane Reactor”, Topics in Catalysis, vol. 29, pp. 79-84, May 2004.
[37] S. Adhikari and S. Fernando, “Hydrogen membrane separation Techniques”, Industrial & Engineering Chemistry Research, vol. 45, pp. 875-881, Feb 1 2006.
[38] S. C. A. Kluiters, “Status review on membrane systems for hydrogen Separation”, 2004.
[39] Nathan W. Ockwig and Tina M. Neno, “Membranes for Hydrogen Separation”, Chem. Rev. , vol. 107, pp. 4078-4110, 2007.
[40] M.S. Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, J. Mater. Chem., vol. 10, pp.1027-1038, 2000.
[41] Iwahara, H., “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, vol. 77, pp. 289-298, 1995.
[42] Matsumoto, H., Takeuchi, K., Iwahara, H., “Electromotive force of H2-D2 gas cell using high-temperature proton conductors”, Solid State Ionics, vol. 125, pp. 377-381, 1999.
[43] Iwahara, H., Esaka, T., Uchida, H., Yamauchi, T., Ogaki, K., “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, vol.18/19, pp. 1003-1007, 1986.
[44] Yuan, W.H., Gu, Y.P., Li, L., “Synthesis and ionic conduction of cation-deficient apatite La9.33-2x/3MxSi6O26 Doped with Mg, Ca, Sr”, Chin. J. Chem. Eng., vol. 16 (3), pp. 488-491, 2008.
[45] Marnellos, G., Sanopoulou, O., Rizou, A., Stoukides, M., “The use of proton conducting solid electrolytes for improved performance of hydro- and dehydrogenation reactors”, Solid State Ionics, vol. 97, pp. 375-383,
1997.
[46] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, “Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production”, Solid State Ionics, vol.3-4, pp. 359-363, 1981.
[47] H. Uchida, H. Yoshikawa, H. Iwahara, “Formation of protons in SrCeO3-based proton conducting oxides. Part I. gas evolution and absorption in doped SrCeO3 at high temperature”, Solid State Ionics, vol. 34, pp. 103-110, 1989.
[48] T. Hibino, K. Mizutani, T. Yajima, H Iwahara, “Evolution of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by Temperature programmed desorption method”, Solid State Ionics, vol. 57, pp. 303-306, 1992.
[49] T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, “Protonic conduction in SrZrO3-based oxides”, Solid State Ionics, vol. 51, pp. 101-107, 1992.
[50] Hibino, T., Mizutani, K., Yajima, T., Iwahara, H., “Characterization of proton in Y-doped SrZrO3 polycrystal by IR spectroscopy”, Solid State Ionics, vol. 58, pp. 85, 1992.
[51] M. Cai, S. Liu, K. Efimov, J.Caro, A. Feldhoff, H.Wang, “Preparation and hydrogen permeation of BaCe0.95Nd0.05O3-δ membranes”, Journal of Membrane Science, vol. 343, pp. 90-96, 2009.
[52] R.J. Phillips, N. Bonanos, F.W. Poulsen, E.O. Ahlgen, “Structure and electrical characterization of SrCe1-xYxOξ”, Solid State Ionics, vol. 125, pp. 389-395, 1999.
[53] Xiaotong Wei, Y.S. Lin, “Protonic and electronic conductivities of terbium doped strontium cerates”, Solid State Ionics, vol. 178, pp. 1804–1810, 2008.
[54] J. W. Phair and R. Donelson, “Developments and design of novel(non-palladium-based) metal membranes for hydrogen separation”,Industrial & Engineering Chemistry Research, vol. 45, pp. 5657-5674, Aug 2 2006.
[55] H.-B. Zhao, G.-X. Xing, G.V. Baron, “Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering”, Catal. Today, vol. 56, pp. 89, 2000.
[56] K.J. Bryden, J.Y. Ying, “Nanostructured palladium membrane synthesis by magnetron sputtering”, Mater. Sci. Eng. A, vol. 204, pp.140, 1995.
[57] V. Jayaraman, Y.S. Lin, M. Pakala, R.Y. Lin, “Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition”, J. Membr. Sci., vol. 99, pp. 89, 1995.
[58] S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, V. Violante, “Sputtered, electroless, and rolled palladium-ceramic membrane”, J. Membr. Sci., vol. 196, pp. 241, 2002.
[59] I.P. Mardilovich, E. Engwall, Y.H. Ma, “Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membrane”, Desalination, vol. 144, pp. 85, 2002.
[60] J. Tong, Y. Matsumura, H. Suda, K. Haraya, “Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane”, Sep. Purif. Technol., vol. 46, pp. 1-10, 2005.
[61] G. Xomeritakis, Y.S. Lin, “Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition, J. Membr. Sci., vol. 120, pp. 261, 1996.
[62] N. Itoh, T. Akiha, T. Sato, “Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity”, Catal. Today, vol. 104, pp.231, 2005.
[63] G. Xomeritakis, Y.S. Lin, “Fabrication of thin metallic membranes by MOCVD and sputtering”, J. Membr. Sci., vol. 133, pp. 217, 1997.
[64] K.J. Bryden, J.Y. Ying, “Nanostructured palladium-iron membranes for hydrogen separation and membrane hydrogenation reactions”, J. Membr. Sci., vol. 203, pp. 29, 2002.
[65] N. Itoh, N. Tomura, T. Tsuji, M. Hongo, “Deposition of palladium inside straight mesopores of anodic alumina tube and its hydrogen permeability”, Microporous Mesoporous Mater., vol. 39, 2000, pp. 103.
[66] Shin-Kun Ryi, Jong-Soo Park, Sung-Hyun Kim, Sung-Ho Cho, Joo-Seok Park, Dong-Won Kim, “Development of a new porous metal support of metallic Dense membrane for hydrogen separation”, Journal of Membrane Science, vol. 279, pp. 439–445, 2006.
[67] B. McCool, G. Xomeritakis, Y.S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium–silver membranes”, J. Membr. Sci., vol. 161, pp. 67, 1999.
[68] A. Sanson ., P. Pinasco, E. Roncari, “Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs”, Journal of the European Ceramic Society, vol. 28, pp. 1221-1226, 2008.
[69] Youmin Guo, Ye Lin, Ran Ran, Zongping Shao, “Zirconium doping effect on the performance of BaZryCe0.8−yY0.2O3−ı (0.0≤y≤0.8) proton-conducting for fuel cell applications”, Journal of Power Sources, vol. 193, pp. 400-407,
2009.
[70] ASTM International, 100barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United State.
[71] Standard Test Method for Water Absorption, “Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products”, ASTM C373-88, Reapproved 2006.
[72] Shijing Zhan, Xuefeng Zhu, Baofeng Ji, WeipingWang, Xiaoliang Zhanga, JiboWang, Weishen Yang, Liwu Lin, “Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes”, Journal of Membrane Science, vol. 340, pp. 241-248, 2009.
[73] Sheng-Wei Lee, Chung-Jen Tseng, Jeng-Kuei Chang, Kan-Rong Lee, Chia-Tzu Chen, I-Ming Hung, Sheng-Long Lee, Jing-Chie Lin, “Synthesis and characterization of Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ proton-conducting oxides for use as fuel cell electrolyte”, Journal of Alloys and Compounds , 2013
[74] Wei-Chih, Lee, Chi-Yuen Huang., Liang-Kuo Tsao, Yu-Chun Wu, “Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics”, Journal of the European Ceramic Society, vol. 29, pp. 1443-1448, 2009.
[75] Xiaotong Wei, Jay Kniep, Y.S. Lin., “Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream”, Journal of Membrane Science, vol. 345, pp. 201-206, 2009.
[76] Liang Jie, Lingling, Li Li and Mao Yuan Wenhui, “Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ(0≤x≤0.40) Membrane”, Chinese Journal of Chemical Engineering, vol. 18(3), pp. 506-510, 2010.
指導教授 鄭憲清(Jason Shian-Ching Jang) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明