博碩士論文 100331010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.142.197.212
姓名 葉昱伶(Yu-Ling Yeh)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 聚乙二醇對於擬球藻生長與脂質堆積之影響
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究
★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量
★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究
★ 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 海洋微藻由於具有許多有益的成分,例如:多元不飽和脂肪酸、蛋白質、類胡蘿蔔素和多醣體,因此奠定了其應用價值。在諸多種微藻中,擬球藻是一種富含脂質的藻種,在適當的培養條件下其總脂質含量可高達總微藻乾重的68% (w/w),因此其於實際應用中展現了極大的潛力。為了提升擬球藻的商業應用性,在本研究中我們嘗試以聚乙二醇來提升微藻的生物質與脂質的生產效益。首先,我們使用0 ~ 5% (w/v)的PEG-6000評估聚乙二醇的濃度對於微藻生長率的改變。接著測試不同的聚乙二醇分子量其範圍為400到20000對於微藻的生長、細胞尺寸以及生物質、脂質與EPA產量的影響。此外,為了評估將聚乙二醇應用於大規模的密閉式培養系統中的可行性,我們更進一步測試聚乙二醇降低氧氣抑制對於微藻生長的能力。研究結果顯示,在聚乙二醇所產生的滲透壓範圍2.465 ~ 2.472 MPa內能夠提升微藻的生長。在相同濃度0.5% (w/v)下,較高分子量的聚乙二醇分子展現出較高的生物質與脂質的總生產力。在本研究中所設定的各種不同條件下,0.5% (w/v)的PEG-20000不會干擾細胞尺寸且能夠在培養7天後使生物質、總脂質量與總EPA產量提高50%以上,為擬球藻培養提供了最佳的條件。另外我們發現0.5% (w/v)的PEG-20000能夠能夠減少氧氣抑制對於微藻生長的影響,綜合以上的實驗結果,本研究提出以PEG-20000為介導的微藻培養方式對於實際產業的應用具有高度的潛力。
摘要(英) The value of marine microalgae has long been identified due to their useful products such as polyunsaturated fatty acids, proteins, carotenoids, and polysaccharides. Among various microalgae, Nannochloropsis oculata is a lipid-rich species which can yield up to 68% (w/w) total lipid under appropriate cultivation and thus exhibit high potential for practical applications. To enhance the commercial availability of Nannochloropsis oculata, effectiveness of using polyethylene glycol (PEG) to increase microalgal biomass and lipid production was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0 - 5% (w/v) PEG-6000, and followed by exploring the effects of PEG molecule weights range from 400 to 20000 on microalgal growth, size, as well as on yields of biomass, lipids, and eicosapentaenoic acid. Furthermore, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also studied in order to assess the adaptability of PEG for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress in the range of 2.465 - 2.472 MPa can increase microalgal growth. The PEG with higher molecular weight exhibited higher biomass but less lipid productivity under equal concentration of 0.5% (w/v). Among different conditions set in this study, 0.5% (w/v) PEG-20000 enabled to yeld > 50% (w/w) increases in biomass, total lipid and eicosapentaenoic acid amounts after seven days without interference of cellular size, offering the optimal condition for Nannochloropsis oculata cultivation. With another fact that 0.5% (w/v) PEG-20000 enabled to diminish the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated microalgal cultivation exhibits a high potential for use in industry.
關鍵字(中) ★ 擬球藻
★ 二十碳五烯酸
★ 聚乙二醇
★ 生物質
★ 脂質
關鍵字(英) ★ Nannochloropsis oculata
★ eicosapentaenoic acid
★ polyethylene glycol
★ biomass
★ lipid
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論1
1-1 前言 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 藻類介紹 4
2-2 擬球藻 5
2-3 二十碳五烯酸 6
2-4 影響微藻之生長與脂質堆積的環境因子 7
2-4-1 氮源濃度 7
2-4-2 鹽度 8
2-4-3 溫度 9
2-4-4 pH值 9
2-5 聚乙二醇 10
2-6 藻類脂質萃取技術 11
2-6-1 微波輔助萃取法 11
2-6-2 超音波萃取法 12
2-6-3 滲透壓衝擊萃取法 12
2-6-4 細胞壁澎爆法 13
2-6-5 溶劑萃取法 13
2-6-6 加速溶劑萃取法 14
第三章 實驗材料與方法 15
3-1 實驗設計流程 15
3-2 實驗儀器與設備 16
3-3 藻種來源與培養 17
3-4 韋因培養基組成 18
3-5 聚乙二醇 19
3-6 PEG-400與PEG-20000對培養液中氧氣溶解度的影響 20
3-7 擬球藻脂質的萃取 21
3-8 以HPLC-UV分析測定脂質中EPA的含量 22
3-9 數據的統計與分析 23
第四章 結果與討論 24
4-1 PEG-6000濃度對於擬球藻生長的影響 24
4-2 聚乙二醇分子量對於擬球藻生長的影響 25
4-3 聚乙二醇分子量對於擬球藻生物質產量及脂質堆積的影響 27
4-4 聚乙二醇所形成的滲透壓對於擬球藻生長的影響 28
4-5 聚乙二醇分子量對於擬球藻細胞尺寸的影響 30
4-6 聚乙二醇分子量對於培養液中pH值變化的影響 31
4-7 PEG-400與PEG-20000對於培養液中的氧氣溶解度的影響 32
4-8 擬球藻藉由PEG-20000克服氧氣對生長抑制的效果 34
第五章 結論與未來展望 36
5-1 結論 36
5-2 未來展望 37
參考文獻 38
參考文獻 [1] H. M. Su, M. S. Su, and I. C. Liao, “Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae”, Hydrobiologia, Vol. 358, pp. 301-304, 1997.
[2] V. Patil, T. Källqvist, E. Olsen, G. Vogt, and H. R. Gislerød, “Fatty acid composition of 12 microalgae for possible use in aquaculture feed”, Aquaculture International, Vol. 15, pp. 1-9, 2007.
[3] K. R. Gustafson, J. H. Cardellina II, R. W. Fuller, O. S. Weislow, R. F. Kiser, K. M. Snader, G. M. L. Patterson, and M. R. Boyd, “AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae)”, Journal of the National Cancer Institute, Vol. 81, pp. 1254-1258, 1989.
[4] W. R. Liao, R. Huang, and H. M. Su, “Hemagglutinating activity from marine microalgae”, Nova Hedwigla Beiheft, Vol. 122, pp. 99-106, 2001.
[5] S. K. Kim, and K. H. Kang, “Medicinal effects of peptides from marine microalgae”, Advances in Food and Nutrition Research, Vol. 64, pp. 313-323, 2011.
[6] Y. Chisti, “Biodiesel from microalgae”, Biotechnology Advances, Vol. 25, pp. 294-306, 2007.
[7] L. V. D. Elsen, J. Garssen, and L. Willemsen, “Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease”, Current Pharmaceutical Design, Vol. 18, pp. 2375-2392, 2012.
[8] M. E. Sublette, S. P. Ellis, A. L. Geant, and J. J. Mann, “Meta-analysis:Effects of eicosapentaenoic acid in clinical trials in depression”, Journal of Clinical Psychiatry, Vol. 72, pp. 1577-1584, 2011.
[9] C. Song, and S. Zhao, “Omega-3 fatty acid eicosapentaenoic acid. A new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations”, Expert Opinion on Investigational Drugs, Vol. 16, pp. 1627-1638, 2007.
[10] C. W. Zhang, O. Zmorac, R. Kopela, and A. Richmond, “An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae)”, Aquaculture, Vol. 195, pp. 35-49, 2001.
[11] Y. Li, M. Horsman, B. Wang, N. Wu, and C. Q. Lan, “Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans”, Applied Microbiology and Biotechnology, Vol. 81, pp. 629-636, 2008.
[12] M. Piorreck, K. H. Baasch, and P. Pohl, “Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes”, Phytochemistry, Vol. 23, pp. 207-216, 1984.
[13] Y. Suen, J. S. Hubbcird, G. Holzer, and T. G. Toniabene, “Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes”, Journal of Phycology, Vol. 23, pp. 289-296, 1987.
[14] D. H. Turpin, “Effect of inorganic N availability on algal photosynthesis and carbon metabolism”, Journal of Phycology, Vol. 27, pp. 14-20, 1991.
[15] T. Endo, U. Schreiber, and K. Asada, “Suppression of quantum yield of photosystem-II by hyperosmotic stress in Chlamydomonas-reinhardtii”, Plant and Cell Physiology, Vol. 36, pp. 1253-1258, 1995.
[16] A. R. Rao, C. Dayananda, R. Sarada, T. R. Shamala, and G. A. Ravishanker, “Effect of salinity on growth of green alga Botryococcus braunii and its constituents”, Bioresource Technology, Vol. 98, pp. 560-564, 2007.
[17] A. B. Amotz, T. G. Tornabene, and W. H. Thomas, “Chemical profile of selected species of microalgae with emphasis on lipids”, Journal of Phycology, Vol. 21, pp. 72-81, 1985.
[18] S. M. Renaud, and D. L. Parry, “Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae”, Journal of Applied Phycology, Vol. 6, pp. 347-356, 1994.
[19] A. S. Cifuentes, M. A. Gonzalez, I. Inostroza, and A. Aguilera, “Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): Growth and pigment content across a salinity gradient”, Journal of Phycology, Vol. 37, pp. 334-344, 2001.
[20] S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, “Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO)”, Journal of Applied Phycology, Vol. 7, pp. 595- 602, 1995.
[21] S. M. Renaud, L. V. Thinh, G. Lambrinidis and D. L. Parry, “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures”, Aquaculture, Vol. 211, pp. 195-214, 2002.
[22] A. E. Richmond, and C. J. Soeder, “Microalgaculture”, Critical Reviews in Biotechnology, Vol. 4, pp. 369-438, 1986.
[23] Z. Zhang, J. P. Sachs, and A. Marchetti, “Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects”, Organic Geochemistry, Vol. 40, pp. 428-439, 2009.
[24] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances”, The Plant Journal, Vol. 54, pp. 621-639, 2008.
[25] J. M. S. Rocha, J. E. C. Garcia, and M. H. F. Henriques, “Growth aspects of the marine microalga Nannochloropsis gaditana”, Biomolecular Engineering, Vol. 20, pp. 237-242, 2003.
[26] F. C. Rubio, F. G. A. Fernandez, J. A. S. Perez, F. G. Camacho, and E. M. Grima, “Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture”, Biotechnology and Bioengineering, Vol. 62, pp. 71-86, 1999.
[27] J. B. Guckert, and K. E. Cooksey, “Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition”, Journal of Phycology, Vol. 26, pp. 72-79, 1990.
[28] S. Y. Chiu, C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen and C. S. Lin, “Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration”, Bioresource Technology, Vol. 100, pp. 833-838, 2009.
[29] E. W. Becker, Microalgae: biotechnology and microbiology, Cambridge University Press, UK, 1994.
[30] D. W. Lawlor, “Absorption of polyethylene glycols by plants and their effects on plant growth”, New Phytologist, Vol. 69, 501-513, 1970.
[31] H. Tarkow, W. C. Feist, and C. F. “Southerland, Interaction of wood with polymeric materials. Penetration versus molecular size”, Forest Products Journal, Vol. 16, pp. 61-65, 1966.
[32] M. Hohl, P. Schopfer, “Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure”, Plant Physiology, Vol. 95, pp. 716-722, 1991.
[33] A. Safarnejad, “Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.)”, Pakistan Journal of Botany, Vol. 40, pp. 735-746, 2008.
[34] D. M. Chen, K. Khalili, and J. W. Cairney, “Influence of water stress on biomass production by isolates of an ericoid mycorrhizal endophyte of Woollsia pungens and Epacris microphylla (Ericaceae)”, Mycorrhiza, Vol. 13, pp. 173-176, 2003.
[35] O. Biondi, S. Motta, and P. Mosesso, “Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro”, Mutagenesis, Vol. 17, pp. 261-264, 2002.
[36] T. M. Mata, A. A. Martins, and N. S. Caetano “Microalgae for biodiesel production and other applications: A review”, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 217-232, 2010.
[37] Microalgae-Nannochloropsis sp., Commonwealth Scientific and Industrial Research Organisation, 2009.
[38] R. J. Woodman, T. A. Mori, V. Burke, I. B. Puddeya, A. Bardena, G. F. Wattsa, and L. J. Beilina, “Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients”, Atherosclerosis, Vol. 166, pp. 85-93, 2003.
[39] O. Adam, C. Beringer, T. Kless, C. Lemmen, A. Adam, M. Wiseman, P. Adam, R. Klimmek, and W. Forth “Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis”, Rheumatology International, Vol. 23, pp. 27-36, 2003.
[40] J. M. Kremer, “n-3 fatty acid supplements in rheumatoid arthritis”, The American Journal of Clinical Nutrition, Vol. 71, pp. 349-351, 2000.
[41] D. H. Volker, P. E. B. Fitzgerald, and M. L. Garg, “The eicosapentaenoic to docosahexenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rates”, The Journal of Nutrition, Vol. 130, pp. 559-565, 2000.
[42] L. M. Newcomer, I. B. King, K. G. Wicklund, and J. L. Stanford, “The association of fatty acids with prostate cancer risk”, The Prostate, Vol. 47, pp. 262-268, 2001.
[43] A. J. Sinclair, “The good oil: omega 3 polyunsaturated fatty acids”, Today’s life science, Vol. 3, pp. 18, 1991.
[44] P. C. Calder, “Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids”, Brazilian Journal of Medical and Biological Research, Vol. 31, pp. 467-490, 1998.
[45] G. C. Zittelli, F. Lavista, A. Bastianini, L. Rodolfi, M. Vincenzini, and M. R. Tredici, “Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors”, Journal of Biotechnology, Vol. 70, pp. 299-312, 1999.
[46] Z. Cohen, and C. Ratledge, Single Cell Oils, America Oil Chemiste’ Society Press, USA, pp.1-20, 2005.
[47] Z. Cohen, Chemicals from Microalgae, Taylor And Francis Ltd, London, pp. 108-109, 1999.
[48] Z. Y. Wen, and F. Chen, “Heterotrophic production of eicosapentaenoic acid by microalgae”, Biotechnology Advances, Vol. 21, pp. 273-294, 2003.
[49] K. I. Reitan, J. R. Rianuaao, and Y. Olsen, “Effect of nutrient limitation on fatty acid and lipid content of marine microalgae”, Journal of Phycology, Vol. 30, pp. 927-979, 1994.
[50] R. P. Garay, and J. P. Labaune, “Immunogenicity of Polyethylene Glycol (PEG)”, The Open Conference Proceedings Journal, Vol. 2, pp. 104-107, 2011.
[51] A. Abuchowski, T. Es van, N. C. Palczuk, and F. F. Davis, “Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol”, Journal of Biological Chemistry, Vol. 252, pp. 3578-3581, 1977.
[52] R. B. Greenwald, “PEG drugs: an overview”, Journal of Controlled Release, Vol. 74, pp. 159-71, 2001.
[53] B. A. Erickson, J. C. Austin, C. S. Cooper, and M. A. Boyt, “Polyethylene Glycol 3350 for Constipation in Children With Dysfunctional Elimination”, The Journal of Urology, Vol. 170, pp. 1518-1520, 2003.
[54] J. Aukunuru, C. Bonepally, and V. Guduri, “Preparation, Characterization and Optimization of Ibuprofen Ointment Intended for Topical and Systemic Delivery”, Tropical Journal of Pharmaceutical Research, Vol. 6, pp. 855-860, 2007.
[55] A. P. R. Johnston, C. Cortez, A. S. Angelatos, and F. Caruso, “Layer-by-layer engineered capsules and their applications”, Current Opinion in Colloid and Interface Science, Vol. 11, pp. 203-209, 2006.
[56] S. Mondal, “Phase change materials for smart textiles - An overview”, Thermal Engineering, Vol. 28, pp. 1536-1550, 2008.
[57] R. W. Jahnke, “Hot melt metal working lubricants”, United States Patent, Patent No. 4116872, 1978.
[58] P. Appendini, and J. H. Hotchkiss, “Review of antimicrobial food packaging”, Innovative Food Science and Emerging Technologies, Vol. 3, pp. 113-126, 2002.
[59] C. S. Eskilsson, and E. Björklund, “Analytical-scale microwave-assisted extraction”, Journal of Chromatography A, Vol. 902, pp. 227-250, 2000.
[60] T. Jain, V. Jain, R. Pandey, A. Vyas, and S. S. Shukla, “Microwave assisted extraction for phytoconstituents-An overview”, Asian Journal of Research in Chemistry, Vol. 2, pp. 19-25, 2009.
[61] G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas, “Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves”, Ultrasonics Sonochemistry, Vol. 15, pp. 898-902, 2008.
[62] L. Wang, and C. L. Weller, “Recent advances in extraction of nutraceuticals from plants”, Trends in Food Science and Technology, Vol. 17, pp. 300-312, 2006.
[63] P. Mercer, and R. E. Armenta, “Developments in oil extraction from microalgae”, European Journal of Lipid Science and Technology, Vol. 113, pp. 539-547, 2011.
[64] B. Browne, R. Gibbs, J. McLeod, M. Parker, W. Schwanda, and K. Warren, “Oil Extraction from Microalgae”, Algae Oil Extraction Capstone, 2009/2010.
[65] 闕壯群,“細胞壁澎爆法”,中華民國專利,專利號碼:183428,2003。
[66] A. N. A. Aryee, and B. K. Simpson, “Comparative studies on the yield and quality of solvent-extracted oil from salmon skin”, Journal of Food Engineering, Vol. 92, pp. 325-358, 2009.
[67] J. Jones, S. Manning, M. Montoya, K. Keller, and M. Poenie, “Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry”, Journal of the American Oil Chemists’ Society, Vol. 89, pp. 1371-1381, 2012.
[68] N. P. Money, “Osmotic pressure of aqueious polyethylene glycols”, Plant Physiology, Vol. 91, pp. 766-769, 1989.
[69] J. C. Weissman, R. P. Goebel, and J. R. Benemann, “Photobioreactor design: mixing, carbon utilization, and oxygen accumulation”, Biotechnology and Bioengineering, Vol. 31, pp. 336-344, 1988.
[70] M. R. Tredici, G. C. Zittelli, S. Biagiolini, and R. Materassi, “Novel photobioreactor for the mass cultivation of Spirulina spp”, Bulletin De L’Institut Oceanographique, Vol. 12, pp. 89-96, 1993.
[71] S. Aiba, “Growth kinetics of photosynthetic microorganisms”, Advances in Biochemical Engineering, Vol. 23, pp. 85-156, 1982.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明