博碩士論文 100331013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.220.137.164
姓名 謝大誠(Tai-shin Chia)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 一體式植牙穩固度檢測裝置之設計製作及驗證
(Design and Implementation of Detection Devices for Dental Implantation Stability)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用非接觸式磁激振與感應原理於人工植牙術後穩固度檢測,其檢測方式基於結構共振頻率檢測法。為驗證裝置之量測有效性,線性霍爾感應器 測得植體之共振頻率將與市售檢測裝置Osstell® ISQ測得之結果作相關性分析,同時利用電容式位移計量測植體實際位移量作為對照。研究分兩部分,第一部分主要介紹電磁與線性霍爾效應之原理,並且說明系統(電磁鐵,植體,線性霍爾感應器)運作方式 。 第二部分利用體外實驗與動物實驗,驗證並瞭解其臨床使用之特性。此外藉由實驗說明轉移函數與均方根值使線性霍爾感應器測得植體共振頻率之方式 。也透過電容式位移計瞭解Osstell® ISQ 之機制,作為未來裝置改良標準。
經動物實驗10週觀察植體頻率變化,兔子脛骨長軸測得(3916±364 至5696±153 Hz),其短軸測得(5813±783 至 6026±154 Hz)。結果顯示電磁激振感應 與 Osstell® ISQ 測得結果高度相關(長軸R2 = 0.97-0.96, 短軸 R2 =0.57-0.4),但隨著時間癒合植牙穩固度提升以及軟組織包覆植體,磁激振強度不足導致實驗結果不理想。從研究指出, 非接觸式磁激振與感應裝置可同側激振與接收並具有發展性也成功將裝置一體化。
摘要(英) The aim of this thesis was to develop a detection device for dental implantation stability, based on resonance frequency method by using magnetism excitation and measurement. For the implementation and performance verification of the new designed EM instrument, the Osstell® ISQ and its SmartPegTM were used as a benchmark for comparison. Especially to verify the sensing performance of the dual Hall-effect sensor, a high precision non-contact displacement sensor was used to capture the actual displacement response of the TestPegTM for RF value comparison. The thesis consists of two parts. First, brief description of basic concepts of a electromagnetism, the Hall effect theory, and the system (electromagnet, implant, Hall-effect sensor) overview. Secondly, the in-vitro and in-vivo experimental model was designed to verify the performance of the EM instrument, and additional experiment to explain the output of the EM instrument. Besides, a capacitive displacement sensor was employed to capture the Osstell® ISQ excitation signal for its mechanism brief description. The comparison of the EM and Osstell® ISQ excitation signal was capture by the Hall effect sensor.
From a 10-week experiment on the RF observation on the rabbit tibia shows measurement on the axial direction (3916±364 to 5696±153 Hz) and lateral direction (5813±783 to 6026±154 Hz). The result shows EM instrument is highly correlated with the result of Osstell® ISQ (axial: R2 = 0.97-0.96, lateral: R2 =0.57-0.4). The Hall effect sensor was failed to detect response at the last 2 experiments, due to the EM instrument was self-assembly by different components, and the excitation response of the EM instrument at high frequency was not strong enough to vibrate the object. The study shows the non-contact EM instrument is feasible for detection on dental implantation stability.
關鍵字(中) ★ 牙科植體
★ 磁激振
★ 霍爾效應
★ 共振頻率分析
關鍵字(英) ★ dental implant
★ Hall effect sensor
★ resonance frequency analysis
★ magnetism excitation
論文目次 摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Table x
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Literature Review 1
1.2.1 Invasive Methods 1
1.2.2 Non-invasive Methods 2
1.2.2.1 Radiographic observation 2
1.2.2.2 Periotest 2
1.2.3 Resonance Frequency Method 2
1.2.3.1 Osstell 2
1.2.3.2 Implomate 3
1.2.3.3 Noncontact Vibro-Acoustic RF Detection 3
1.2.3.4 Noncontact electromagnetic vibration device 4
1.3 Framework 5
Chapter 2 Detection Mechanism for Dental Implantation Stability 7
2.1 Detection of Structural Resonance 7
2.1.1 Resonance Frequency of Cantilever Structure 7
2.1.2 Vibration measurements 8
2.1.3 Signal Processing 9
2.1.3.1 Fast Fourier Transform 9
2.1.3.2 Root-Mean Square (R.M.S) 9
2.1.3.3 Transfer Function 10
2.2 Basic Magnetism Properties 11
2.2.1 Magnetic Field of a Permanent Magnet 11
2.2.2 Attraction and Repulsion of Magnet 12
2.2.3 Electromagnetism 12
2.2.4 The Magnitude of Magnetism 13
2.2.4.1 Magnetic Flux Density 13
2.2.4.2 Magnetic Field of Current 13
2.2.4.3 Relationship between H and B 14
2.3 Electromagnet 14
2.3.1.1 Magnetic Field in a Loop 14
2.3.1.2 Solenoid 15
2.4 Hall-effect Sensing 16
2.4.1 Basic theory of the Hall-effect 17
2.4.2 Basic Hall effect sensors 18
Chapter 3 Design of Detection Devices 19
3.1 Detection Devices Overview 20
3.2 Devices Component Overview 22
3.2.1 Electro-Magnet 22
3.2.2 Ratiometric Linear Hall-effect Sensor 23
3.2.3 LabVIEW User/Machine Interface of EM Measuring Device 24
Chapter 4 Device Implementation and Performance Verification 26
4.1 Experimental Procedure 26
4.1.1 EM Detection Device 27
4.1.2 Osstell® ISQ Probe Exciter 27
4.1.3 Piezo Buzzer 28
4.2 Devices Verification on TestPeg 30
4.3 In Vivo Animal Model for Devices Measurement 30
Chapter 5 Experimental Results and Discussion 33
5.1 Devices Measurement on TestPeg 33
5.2 Disscusion on TestPeg Experimention 35
5.2.1 Significance of Peak and Valley on DHE Sensing Spectrum 35
5.2.2 Computation Technique of Dual Hall Effect Sensors 38
5.2.3 Mechanism of Osstell Excitation 40
5.2.4 Comparison of Electromagnet and Osstell® ISQ Probe 43
5.3 In-vivo Experimental Result 44
In-vivo Experimental Discussion 47
Chapter 6 Conclusions and Future Work 49
Reference 51
Appendix A: Linear Regression Analysis Result (Axial Direction) 53
Appendix B: Linear Regression Analysis Result (Lateral Direction) 57
參考文獻 Reference
[1] P.-I. Brånemark, G. A. Zarb, and T. Albrektsson, Tissue-integrated prostheses: osseointegration in clinical dentistry: Quintessence, 1985.
[2] R. Gapski, H. L. Wang, P. Mascarenhas, and N. P. Lang, "Critical review of immediate implant loading," clinical oral implants research, vol. 14, pp. 515-527, 2003.
[3] C. Johansson and T. Albrektsson, "Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants," The International journal of oral & maxillofacial implants, vol. 2, p. 69, 1987.
[4] L. Ericson, L. Sennerby, and P. Thomsen, "Ultrastructure of the bone-titanium interface in rabbits," Journal of Materials Science: Materials in Medicine, vol. 3, pp. 262-271, 1992.
[5] S. Sunden, K. Gröndahl, and H. G. Gröndahl, "Accuracy and precision in the radiographic diagnosis of clinical instability in Brånemark dental implants," clinical oral implants research, vol. 6, pp. 220-226, 1995.
[6] W. Schulte, B. d’Hoedt, D. Lukas, L. Muhlbradt, F. Scholz, J. Bretschi, D. Frey, H. Gudat, M. Konig, and M. Markl, "[Periotest--a new measurement process for periodontal function]," Zahnarztliche Mitteilungen, vol. 73, p. 1229, 1983.
[7] M. Hayashi, C. Kobayashi, H. Ogata, M. Yamaoka, and B. Ogiso, "A no‐contact vibration device for measuring implant stability," clinical oral implants research, vol. 21, pp. 931-936, 2010.
[8] H.-B. Zhuang, W.-S. Tu, M.-C. Pan, J.-W. Wu, C.-S. Chen, S.-Y. Lee, and Y.-C. Yang, "Non-contact Vibro-acoustic Detection Technique for Dental Osseointegration Examination," Journal of Medical and Biological Engineering, vol. 33, pp. 35-43, 2013.
[9] "OsstellTM user’s manual," ed. Göteborg,Sweden: Integration Diagnostics AB.
[10] V. Pattijn, S. Jaecques, E. De Smet, L. Muraru, C. Van Lierde, G. Van der Perre, I. Naert, and J. Vander Sloten, "Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer," Medical engineering & physics, vol. 29, pp. 182-190, 2007.
[11] Y. Ito, D. Sato, S. Yoneda, D. Ito, H. Kondo, and S. Kasugai, "Relevance of resonance frequency analysis to evaluate dental implant stability: simulation and histomorphometrical animal experiments," clinical oral implants research, vol. 19, pp. 9-14, 2008.
[12] N. Meredith, D. Alleyne, and P. Cawley, "Quantitative determination of the stability of the implant‐tissue interface using resonance frequency analysis," clinical oral implants research, vol. 7, pp. 261-267, 1996.
[13] N. Meredith, K. Books, B. Fribergs, T. Jemt, and L. Sennerby, "Resonance frequency measurements of implant stability in viva. A cross‐sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla," clinical oral implants research, vol. 8, pp. 226-233, 1997.
[14] N. Meredith, F. Shagaldi, D. Alleyne, L. Sennerby, and P. Cawley, "The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia," clinical oral implants research, vol. 8, pp. 234-243, 1997.
[15] S. Wang, G. Liu, K. Hoang, and Y. Guo, "Identifiable range of osseointegration of dental implants through resonance frequency analysis," Medical engineering & physics, vol. 32, pp. 1094-1106, 2010.
[16] "Osstell Mentor User Manual," ed. Göteborg,Sweden: Integration Diagnostics AB.
[17] H.-M. Huang, L.-C. Pan, S.-Y. Lee, C.-L. Chiu, K.-H. Fan, and K.-N. Ho, "Assessing the implant/bone interface by using natural frequency analysis," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 90, pp. 285-291, 2000.
[18] W.-J. Chang, S.-Y. Lee, C.-C. Wu, C.-T. Lin, Y. Abiko, N. Yamamichi, and H.-M. Huang, "A newly designed resonance frequency analysis device for dental implant stability detection," Dent Mater J, vol. 26, pp. 665-671, 2007.
[19] M. Yamane, M. Yamaoka, M. Hayashi, I. Furutoyo, N. Komori, and B. Ogiso, "Measuring tooth mobility with a no‐contact vibration device," Journal of periodontal research, vol. 43, pp. 84-89, 2008.
[20] T. Agilent, "The fundamentals of modal testing," Tech. Rep. 5954-7957E, Agilent Technologies,2000.
[21] R. Kurtus. (2012). Detection of a Magnetic Field by Ron Kurtus - Succeed in Understanding Physics: School for Champions. Available: http://www.school-for-champions.com/science/magnetic_detection.htm
[22] W. Storr. (2013). Electronics Tutorial about Magnetism. Available: http://www.electronics-tutorials.ws/electromagnetism/magnetism.html
[23] L. Tauxe, R. F. Butler, R. Van der Voo, and S. K. Banerjee, Essentials of paleomagnetism: University of California Press, 2010.
[24] W. Hayt and J. Buck, Engineering Electromagnetics: McGraw-Hill Education, 2011.
[25] C. R. Nave. (2000). HyperPhysics. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
[26] G. Pepka, "Position and level sensing using Hall-effect sensing technology," Sensor Review, vol. 27, pp. 29-34, 2007.
[27] W. D. McCall and E. J. Rohan, "A linear position transducer using a magnet and Hall effect devices," Instrumentation and Measurement, IEEE Transactions on, vol. 26, pp. 133-136, 1977.
[28] E. Ramsden, Hall-Effect Sensor Theory and Application,Second Edition: Newnes, 2006.
[29] R. J. Parker, "Permanent magnet guidelines," Magnetic Materials Producers Association, Chicago, p. 17, 1998.
[30] Honeywell, HALL EFFECT SENSING AND APPLICATION: Honeywell Inc., 2013.
[31] E. H. Hall, "On a New Action of the Magnet on Electric Currents," American Journal of Mathematics, vol. 2, pp. p.287-292, 1879.
[32] L. Williams, "Electromagnetic Levitation," undergraduate, Department of Electrical Engineering, University of Cape Town, 2005.
[33] K. A. Lilienkamp, "Low-cost magnetic levitation project kits for teaching feedback system design," presented at the IEEE, Boston, Massachusetts, 2004.
[34] E. G. Inc., "Electromagnet," EEM20B datasheet, Everlead Global Inc., 2012.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明