博碩士論文 100331014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.217.144.32
姓名 葉致均(Chih-Chun Yeh)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 評估生理雜訊對於靜息態功能性磁振造影之影響
(Evaluation of Physiological Noise Embedded in Resting-state fMRI)
相關論文
★ 應用希爾伯特黃轉換於功能性磁振造影之非穩態信號分析★ 瀕死狀態下大腦功能性聯結之動態變化:觀察氯化鉀注射後大鼠之生理反應
★ 探討同步功能性磁振造影與腦電圖於夜間睡眠研究★ 利用同步腦電圖與功能性磁振造影探討睡眠階段之大腦活動
★ 以腦電圖觀察大腦恢復清醒的動態歷程★ 探討區域性大腦網路恢復於睡眠遲惰研究
★ 中風復健與大腦的神經可塑性變化: 縱貫性功能性磁振造影研究★ 以功能性磁振造影初探分心於創意醞釀之影響
★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響★ 運用石墨烯射頻線圈增進7T磁振造影訊雜比之研究
★ 睡眠遲惰期間警覺網路於執行警覺任務下的動態恢復歷程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,靜息狀態功能性磁振造影(Resting-state Functional Magnetic Resonance Imaging, RS-fMRI)的研究被廣泛的運用在心理及臨床領域,因此受到越來越多的關注,也成為當今神經科學領域研究的熱門議題之一。即使相關研究逐年增加,靜息狀態功能性磁振造影之機制尚未明朗且仍需投入大量研究。雖然科學家並沒有完全了解靜息態功能性磁振造影的訊號源,但是基於血氧濃度依賴(Blood Oxygen Level-Dependent, BOLD)訊號的低頻波動可反映神經自發性的同步活化現象,因此提供我們探索大腦運作謎團的契機。然而自發性的波動非常微小,極易被系統雜訊及生理雜訊所影響。因此若能降低來自內在及外在因素所造成的雜訊,其大腦連結的特性將會更為顯著。所以,本文嘗試使用三種不同的雜訊移除方法並探討其用於靜息狀態功能性磁振造影分析之效果。
本研究於兩台3 Tesla (T)磁振造影儀(型號分別為Siemens Trio及Skyra)收集靜息態的資料,並在收集的同時量測呼吸及心跳的訊號。利用(1) 脈衝響應分析 (IRF) 、(2) RETROICOR及(3) 脈衝響應結合RETROICOR (IRFRETRO)來去除生理雜訊。目前靜息狀態功能性磁振造影信號並沒有特定的指標可衡量資料的穩定性,因此本論文提出以像素為基礎之五種指標:低頻振幅(ALFF)、低頻振幅比例(fALFF)、 區域同質性(ReHo)、空間及時間訊雜比(spatial and temporal SNR),來估測資料的品質,並針對不同腦區:全腦(Whole Brain,WB)、前額皮層(Orbitofrontal Cortex,OFC)、視覺皮質區(Visual Cortex,VC)、杏仁核(Amygdala,AMY)來探討腦區間的特性。
結果顯示生理雜訊對於五種指標之影響甚小,無論使用何種去除生理雜訊之方法皆無顯著差異;而在腦區間的比較,視覺皮質區相較於其他區域有著較強烈的區域同質性;在磁振造影儀器之間的比較,Skyra比起Trio有較高的空間與時間訊雜比,意即全腦及視覺皮質區域的靜息狀態功能性磁振造影訊號在Trio上較易受到系統雜訊之影響;而Skyra則是在空間解析度方面有較大的受試者間差異。結果表示,從靜息狀態功能性磁振造影訊號移除生理雜訊於觀察上述五種指標分析時並非必須執行之程序。這項觀察結果可能意味著生理訊號(呼吸、心跳)也包含在靜息狀態功能性磁振造影訊號之一部份,單純視其為雜訊可能並不適當,這方面還需要更進一步的研究探討。
摘要(英) Recently, the investigations of resting-state functional magnetic imaging (RS-fMRI) have attracted attention to the neuroscience field for its wide application on psychological exploration and the clinical pathologies. Beyond its proliferation, the mechanism of RS-fMRI remains unknown and under intensive investigations. Although scientists do not clarify the RS-fMRI signal sources, the blood oxygen level-dependent (BOLD)-based RS-fMRI datasets could be influenced by pre-defined noise types, such as instrumental and physiological noise. Therefore, it is claimed that if the noise of RS-fMRI can be reduced, the significance of the functional connectivity is supposed to increase. To this point, we tested three different noise removal methods to investigate their effectiveness on RS-fMRI analyses.
We collected RS-fMRI data from two 3 Tesla (T) scanners, and measured the physiological monitoring unit, including respiration and cardiac pulsation signals, simultaneously. For evaluating the effect of physiological noise, we used three ways to estimate the physiological noise: (1) impulse response function (IRF), (2) RETROICOR and (3) the combination of IRF and RETROICOR (IRFRETRO). Then we compared the effect of these methods on five voxel-based RS-fMRI indices (ALFF, fALFF, ReHo, spatial and temporal SNR), including different brain regions: whole brain (WB), orbitofrontal cortex (OFC), visual cortex (VC) and amygdala (AMY) to further evaluate the regional characteristics.
The result showed that the physiological noise has minimal effect on the five RS-fMRI indices, no matter which type of noise removal methods (IRF, RETROICOR or IRFRETRO) was applied. In the regional comparison,, only VC had unique characteristics compared to other regions, especially for ReHo. In the scanner comparison, Skyra possessed higher spatial and temporal SNR than Trio. More specifically, the RS-fMRI signals of WB and VC were dominated by instrumental noise in Trio scanner, whereas the Skyra scanner had higher between-subject variability on spatial SNR. In conclusion, inclusion of the noise removal on RS-fMRI signal may be unnecessary for the five indices. The observations implied that whether we should consider the physiological noise (respiration and cardiac pulsation) as a ‘pure noise’ in RS-fMRI signal remains to be discussed.
關鍵字(中) ★ 靜息狀態下功能性磁振造影
★ 生理訊號
★ 脈衝響應分析
★ RETROICOR
★ IRFRETRO
★ 腦區間的特性
關鍵字(英) ★ Resting-state functional MRI (RS-fMRI)
★ Physiological noise
★ functional connectivity
★ signal-to-noise ratio (SNR)
★ amplitude of low-frequency fluctuations (ALFF)
★ regional homogeneity (ReHo)
★ RETROICOR
論文目次 ACKNOWLEDGEMENTS I
中文摘要 III
ABSTRACT V
CONTENTS VII
LIST OF FIGURES IX
CHAPTER1 PREFACE 1
1.1 Introduction 1
1.2 Hypothesis and Aim 4
BACKGROUND 5
CHAPTER2 5
2.1 Functional MRI (fMRI) 5
2.1.1 Resting-state fMRI 5
2.2 Linear Drift and Five Indices of Resting-state fMRI 6
2.2.1 Linear Drift 6
2.2.2 Noise sources of fMRI 7
2.2.3 Amplitude of Low-Frequency Fluctuations (ALFF and fALFF) 10
2.2.4 Regional Homogeneity (ReHo) 12
2.3 Technologies for Regressor Extraction 13
2.3.1 Impulse Response Function (IRF) 13
2.3.2 RETROICOR 15
CHAPTER3 MATERIAL AND METHODS 18
3.1 Conducting fMRI Experiment 18
3.1.1 Participants 18
3.1.2 Experiment Design 18
3.1.3 Experiment Protocol 19
3.1.2.1.Trio Protocol 19
3.1.2.2.Skyra Protocol 19
3.2 Preprocessing and Region of Interest Registration 20
3.3 Physiological Noise Removal using General Linear Model 21
3.3.1 IRF 21
3.3.2 RETROICOR 22
3.3.3 IRFRETRO 22
3.4 Evaluation of Physiological Noise in Resting-state fMRI Signal 24
3.5 Statistical Comparisons 25
CHAPTER4 RESULTS 26
4.1 Regressor Comparison between IRF, RETROICOR and IRFRETRO 26
4.2 Assessment of Noise Contribution using Spatial-temporal SNR 28
4.3 Signal Evaluations between Scanners 30
CHAPTER5 DISCUSSION 34
5.1 Importance of Physiological Noise in Resting-state fMRI 34
5.2 Effectiveness of Noise Removal Methods 35
5.3 Scanner Disparity 35
5.4 Modeling of Noise Contribution in fMRI Signal 37
CHAPTER6 CONCLUSION AND FUTURE WORKS 39
6.1 Conclusion 39
6.2 Future Works 40
REFERENCES 41
參考文獻 Ash, T., J. Suckling, et al. (2013). "Detection of physiological noise in resting state fMRI using machine learning." Hum Brain Mapp 34(4): 985-998.
Baria, A. T., M. N. Baliki, et al. (2011). "Anatomical and functional assemblies of brain BOLD oscillations." J Neurosci 31(21): 7910-7919.
Bianciardi, M., M. Fukunaga, et al. (2009). "Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study." Magn Reson Imaging 27(8): 1019-1029.
Birn, R. M., J. B. Diamond, et al. (2006). "Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI." Neuroimage 31(4): 1536-1548.
Birn, R. M., M. A. Smith, et al. (2008). "The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration." Neuroimage 40(2): 644-654.
Chang, C., J. P. Cunningham, et al. (2009). "Influence of heart rate on the BOLD signal: the cardiac response function." Neuroimage 44(3): 857-869.
Chang, C. and G. H. Glover (2009). "Effects of model-based physiological noise correction on default mode network anti-correlations and correlations." Neuroimage 47(4): 1448-1459.
Chang, C. and G. H. Glover (2009). "Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI." Neuroimage 47(4): 1381-1393.
Chang, C., C. D. Metzger, et al. (2013). "Association between heart rate variability and fluctuations in resting-state functional connectivity." Neuroimage 68: 93-104.
Dosenbach, N. U., B. Nardos, et al. (2010). "Prediction of individual brain maturity using fMRI." Science 329(5997): 1358-1361.
Ferreira, L. K. and G. F. Busatto (2013). "Resting-state functional connectivity in normal brain aging." Neurosci Biobehav Rev 37(3): 384-400.
Friedman, L. and G. H. Glover (2006). "Report on a multicenter fMRI quality assurance protocol." J Magn Reson Imaging 23(6): 827-839.
Friman, O., M. Borga, et al. (2004). "Detection and detrending in fMRI data analysis." Neuroimage 22(2): 645-655.
Glover, G. H., T.-Q. Li, et al. (2000). "Image-Based Method for Retrospective Correction of Physiological Motion Effects in fMRI: RETROICOR." Magnetic Resonance in Medicine 44: 162-167.
Gonzalez-Castillo, J., V. Roopchansingh, et al. (2011). "Physiological noise effects on the flip angle selection in BOLD fMRI." Neuroimage 54(4): 2764-2778.
Hacker, C. D., T. O. Laumann, et al. (2013). "Resting state network estimation in individual subjects." Neuroimage 82C: 616-633.
Hines, C. D., T. A. Bley, et al. (2010). "Repeatability of magnetic resonance elastography for quantification of hepatic stiffness." J Magn Reson Imaging 31(3): 725-731.
Jones, T. B., P. A. Bandettini, et al. (2008). "Integration of motion correction and physiological noise regression in fMRI." Neuroimage 42(2): 582-590.
Khalili-Mahani, N., C. Chang, et al. (2013). "The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI." Neuroimage 65: 499-510.
Kiviniemi, V., J. Ruohonen, et al. (2005). "Separation of physiological very low frequency fluctuation from aliasing by switched sampling interval fMRI scans." Magn Reson Imaging 23(1): 41-46.
Koller, C. J., J. P. Eatough, et al. (2006). "A survey of MRI quality assurance programmes." Br J Radiol 79(943): 592-596.
Kruger, G. and G. H. Glover (2001). "Physiological Noise in Oxygenation-Sensitive Magnetic Resonance Imaging." Magnetic Resonance in Medicine 46: 631-637.
Kruger, G., A. Kastrup, et al. (2001). "Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging." Magnetic Resonance in Medicine 45: 595-604.
Kundu, P., S. J. Inati, et al. (2012). "Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI." Neuroimage 60(3): 1759-1770.
Lai, C. H. and Y. T. Wu (2012). "Patterns of fractional amplitude of low-frequency oscillations in occipito-striato-thalamic regions of first-episode drug-naive panic disorder." J Affect Disord 142(1-3): 180-185.
Martin, C., Y. Zheng, et al. (2012). "Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat." Neuroimage 66C: 1-8.
Marx, M., K. B. Pauly, et al. (2013). "A novel approach for global noise reduction in resting-state fMRI: APPLECOR." Neuroimage 64: 19-31.
Murphy, K., J. Bodurka, et al. (2007). "How long to scan? The relationship between fMRI temporal signal to noise and necessary scan duration." Neuroimage 34(2): 565-574.
Restom, K., Y. Behzadi, et al. (2006). "Physiological noise reduction for arterial spin labeling functional MRI." Neuroimage 31(3): 1104-1115.
Wang, S., L. Luo, et al. (2006). Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE.
Sander, D., D. Grandjean, et al. (2005). "Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody." Neuroimage 28(4): 848-858.
Tanabe, J., D. Miller, et al. (2002). "Comparison of detrending methods for optimal fMRI preprocessing." Neuroimage 15(4): 902-907.
Triantafyllou, C., R. D. Hoge, et al. (2005). "Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters." Neuroimage 26(1): 243-250.
Triantafyllou, C., J. R. Polimeni, et al. (2011). "Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils." Neuroimage 55(2): 597-606.
van den Heuvel, M. P. and H. E. Hulshoff Pol (2010). "Exploring the brain network: a review on resting-state fMRI functional connectivity." Eur Neuropsychopharmacol 20(8): 519-534.
van der Zwaag, W., J. P. Marques, et al. (2012). "Temporal SNR characteristics in segmented 3D-EPI at 7T." Magn Reson Med 67(2): 344-352.
Welvaert, M. and Y. Rosseel (2012). "How ignoring physiological noise can bias the conclusions from fMRI simulation results." J Neurosci Methods 211(1): 125-132.
Yang, X., M. J. Holmes, et al. (2012). A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T. SPIE Medical Imaging, International Society for Optics and Photonics.
Zang, Y., T. Jiang, et al. (2004). "Regional homogeneity approach to fMRI data analysis." Neuroimage 22(1): 394-400.
Zang, Y. F., Y. He, et al. (2007). "Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI." Brain Dev 29(2): 83-91.
Zhang, D. and M. E. Raichle (2009). "Disease and the brain’s dark energy." Nature Reviews Neurology 6: 15-28.
Zou, Q. H., C. Z. Zhu, et al. (2008). "An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF." J Neurosci Methods 172(1): 137-141.
Zuo, X. N., A. Di Martino, et al. (2010). "The oscillating brain: complex and reliable." Neuroimage 49(2): 1432-1445.
指導教授 吳昌衛 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明