博碩士論文 100350601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.119.107.96
姓名 露西雅(Gabriela Lucia Letona Molina)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 Identifying optimal places for harvesting rain water using an Analytical Hierarchical Process (AHP): a case study in north eastern Guatemala
(應用層級分析法獲取雨水-逕流回收系統之最佳站位-以瓜地馬拉東北地區為例)
相關論文
★ 水資源管理最佳化-以應用於吉里巴斯首都塔拉瓦南部的雨水收集為例★ GIS於宏都拉斯房地產仲介之研究
★ GIS於宏都拉斯觀光發展之研究★ Landsdlide Identification and Landslide Vegetation Recovery Analysis Using GIS and Remote Sensing Techniques-A Study CAse in El Cajon Reservoir and Choluteca River Watersheds, Honduras, C.A.
★ 氣候變遷對聖文森蒙特利集水區流量之衝擊評估★ 福衛二號衛星影像應用於印尼油棕植區分類之研究
★ 圖繪史瓦濟蘭瓜魯賽尼地區都市化之變遷型態★ 多時的土地覆蓋變化檢測分析,海地和損害程度與建築的關係在地震:一個案例研究的地震一月12,2010
★ 一項研究在伯利茲的紅樹林毀林從可樂華橋席本河 利用地理信息系統和遙感分析★ 利用衛星遙測技術辨識 Fonseca灣中懸浮物與混濁度在時間與空間上的模式
★ 關於發展中小島嶼國家的供水策略: 以聖文森貝基亞島為例★ 以MODIS衛星影像的都市熱能分析檢驗印尼雅加達地區的都市熱島現象
★ 氣候變遷與土地利用變遷對集水區流量衝擊評估-以聖文森蒙特婁集水區為例★ 以遙測技術進行西甘比亞多時序土地覆蓋變遷監測
★ Development and Application of an Assessment Framework for Community Resilience and Vulnerability towards Hydrometeorological disaster inn St. Vincent and the Grenadines★ 應用最大熵法於蒙古山區進行森林樹種分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水資源的重要性對於農業生產力以至於糧食安全舉足輕重。在乾燥、半乾燥地區因氣候條件嚴苛,容易面臨水資源短缺,進而造成作物產量減少,導致嚴重糧食缺乏危機。針對此問題,目前許多補救措施如雨水-逕流回收系統(harvesting rainwater-runoff, HRW)等方法,被利用在改善此嚴苛水資源條件。此系統之概念在於藉由儲蓄溼季多餘水資源並應用於乾季之灌溉水源,以增加可利用之水資源。在乾燥、半乾燥等水資源缺乏地區,可用水回收系統此概念已經有數千年歷史。然而,為了達到更高的回收系統使用效率,系統選址與事前評估相當重要且評估項目涉及廣泛,自然條件與社會經濟特性都包括在此,以期更高的水資源運用效率。
水資源的重要性對於農業生產力以至於糧食安全舉足輕重。在乾燥、半乾燥地區因氣候條件嚴苛,容易面臨水資源短缺,進而造成作物產量減少,導致嚴重糧食缺乏危機。針對此問題,目前許多補救措施如雨水-逕流回收系統(harvesting rainwater-runoff, HRW)等方法,被利用在改善此嚴苛水資源條件。此系統之概念在於藉由儲蓄溼季多餘水資源並應用於乾季之灌溉水源,以增加可利用之水資源。在乾燥、半乾燥等水資源缺乏地區,可用水回收系統此概念已經有數千年歷史。然而,為了達到更高的回收系統使用效率,系統選址與事前評估相當重要且評估項目涉及廣泛,自然條件與社會經濟特性都包括在此,以期更高的水資源運用效率。
本研究選用層級分析法(Analytical Hierarchy Process, AHP)以獲得系統設立之最佳位置,並使用地理資訊系統(Geographic information Systems, GIS)呈現資料之空間分布情形。層級分析法(AHP)應用範圍相當廣泛,特別是需要建立不同性質因子之間的權重關係,以達到比較之目的。本研究中選定因子包括逕流產生潛勢(potential runoff)、坡度(slope)、土地利用(land use)、土壤質地(soil texture)、距離農地之距離(distance from agricultural lands) 與距離道路之距離(distance from roads)。
其中逕流產生潛勢(potential runoff)是由美國農業部(United States Department of Agriculture, USDA)所發展之公式CN值法 (Soil Conservation Service Runoff Curve Number Method, SCS CN Method)求得。此法對於逕流產生機制著重於土地利用型態,且所需參數相對較少,特別適合應用於無歷史資料之地區。
研究區域為瓜地馬拉(Guatemala)東北部地區,氣候型態乾燥缺水。而本研究也嘗試改變各參數在AHP中之權重;以及改變AHP之模式架構以試探本模式參數與結構之敏感度。
摘要(英) Water availability in agriculture sector is an important element in the productivity of a nation, also to maintain food security. Arid and semiarid regions are the common areas that are constantly affecting by water scarcity and soil moisture deficit problems. Those problems affect the crop production and increasing food risk. There are initiatives to address that kind of problems through supplementary systems, called harvesting rainwater-runoff (HRW). Water harvesting has been used for thousands of years in order to increase water availability in semiarid and arid areas. Collected water can be stored or can be used as irrigation water during dry periods or during the wet periods, which contain short dry periods. However, implementation of these systems, should need a location planning for select optimal places for harvesting rainwater, in this manner, it is a strategy for obtain a better performance. Which is why it is important to consider some criteria, which affect the effectiveness of these systems. Factors such as physical and socio-economic characteristics of the target area should be included in the analysis of HRW. An Analytical Hierarchy Process (AHP) was used to determinate optimal places using Geographic information Systems (GIS) in order to integrate spatial information. This method proved to be very useful when there is a need to relate different factors. Criteria such as potential runoff, slope, land use, soil texture, distance from agricultural lands, and distance from roads are taking in consideration in this research. For potential runoff a theoretical method was applied in order to determinate the potential of runoff. This method is called SCS-Curve number, and is a very straightforward method. Also, this method proved to be a good estimator of runoff where is not historical data and where is needed to estimate the cubic meters of runoff that the system can collect. This method was applied to Guatemala’s north eastern region, a place characterized by its semiarid condition and soil moisture deficit. In this research, different values of importance were also changed with respect to some criteria using in AHP method, and was tested with different of AHP structure, in order to show the flexibility of this model.
關鍵字(中) ★ 降雨逕流
★ 層級分析法
★ SCS CN 值法
★ 地理資訊系統
★ 雨水回收
關鍵字(英) ★ Rainfall-Runoff
★ Analytical hierarchy process
★ SCS Curve number
★ GIS
★ Harvesting Rainwater
論文目次 List of Contents
Abstract ii
Chinese abstract iii
Acknowledgment v
List of Tables viii
List of Figures x
Abbreviation and Symbols xii
1. Chapter 1: Introduction 1
1.1 Background 1
1.2 Statement of the problem 3
1.3 Justification of study 5
1.4 State of the art 5
1.5 The importance of the study 5
1.6 Main Objective 6
1.7 Specific Objectives 6
2. Chapter 2: Literature review 7
2.1 Harvesting water 7
2.2 Calculation of runoff 9
2.3 Calculation runoff with GIS 10
2.4 Multiple criteria Decision Making (MCDM) 10
2.5 Analytical Hierarchy Process 12
2.6 Error Matrix 16
2.7 Advantages of analyze potential RWH 18
3. Chapter 3: Study area 20
3.1 General information 20
3.2 Characteristics of the study area 22
4. Chapter4: Methodology 27
4.1 Principal elements of the model 27
4.1.2 Selection of criteria 28
4.1.3 Analytical Hierarchy process for harvesting rain water 31
4.1.4 Estimation of cubic meters of water 32
4.1.5 Sensitivity Analysis 35
4.2 Classification of criteria 35
4.2.1 Slope “A” 35
4.2.2 Land use/cover 36
4.2.3 Soil texture 38
4.2.4 Distance from agricultural lands 39
4.2.5 Distance from roads 42
4.2.6 Potential Runoff 44
4.3 Analytical Hierarchy, structures 51
4.3.1 Relative Weights 55
4.3.2 Case I 55
4.4 Sensitivity Analysis 60
4.4.1 Case II 60
4.4.2 Case III 61
4.5 Error Matrix 61
4.6 Estimation of cubic meters of water 62
5. Chapter 5: Results and Discussion 64
5.1 AHP results 64
5.1.1 Case I 64
5.1.2 Case II 71
5.1.3 Case III 77
5.2 Overlay Case I, Case II, and Case III 84
5.3 Amount of runoff 86
5.4 Discussion 95
5.4.1 Structure #1 96
5.4.2 Structure #2 96
5.4.3 Resume of Structure #1 and Structure #2 97
6. Chapter 6: Conclusions 99
6.1 Conclusions 99
6.2 Recommendations 101
6.3 Limitations 101
References 102
Appendix 105
參考文獻 References
1. Abu-Zreig, M., 2011. Field evaluation of sand-ditch water harvesting technique in Jordan. Agricultural Water Management , (98), p.1291–1296.
2. Al-Adamat, R. et al., 2012. The Combination of Indigenous Knowledge and Geo-Informatics for Water Harvesting Siting in the Jordanian Badia. Journal of Geographic Information System, pp.366-76.
3. Al-Adamat, R., Diabat, A. & Ghada, S., 2010. Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. Journal of Arid Environments , (74), pp.1471-77.
4. Al-Jabari, S., Abu Sharkh, M. & Al-Mimi, Z., 2009. Estimation of Runoff for Agricultural Watershed Using SCS Curve Number and GIS. Thirteenth International Technology Conference, (13), pp.1213-29.
5. B.P, M., 2007. GIS-Based Decision Support System for Identification Potential Sites for Rainwater Harvesting. Physics and Chemistry of the Earth, 32, p.1074–1081.
6. Biswas, A.K., 1983. Major Water Problems facing the world. International Journal of Water Resources Development, 1(1), pp.1-14.
7. Congalton, R.G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote sens. environ., (37), pp.35-46.
8. Critchley, W., 1991. A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. Natural Resources Management and Environment Department.
9. de Winnaar, G., Jewitt, G.P.W. & Horan, M., 2007. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, (32 ), p.1058–1067.
10. E.Johnson, L., 2009. Geographic Information System in Water Resources Engineering. Taylor & Francis Group.
11. Eastman, l.R., Jin, W., Kyem, P.A.K. & Toledano, J., 1995. Raster Procedures for Multi-Criteria/ Multi-Objetive Decisions. Photogrammetric Engineeering & Remote Sensing, 61(5), pp.539-47.
12. El-Awar, F.A., 2000. A hydro-Spatial Hierarchical Method for Siting Water Harvesting Reservoirs in Dry Areas. American Sociaty of Agricultural Engineers , 16(4), pp.395-404.
13. Evangelos, T. & Stuart H., M., 1995. Using The Analytic Hierarchy Process for Decision Making in Engineering Application:Some Challenges. Inter’l Journal of Industrial Engineering: Application and Practice., 2(1), pp.35-44.
14. FAO, 1994. Microempresas Asociativas Integradas por Campesinos Marginados en América Central, Aspectos Jurídicos e Institucionales. [Online] Available at: www.fao.org/docrep/003/t1951s/t1951s00.
15. Fuentealba, J.A.B.a.R., 2011. Latin America: The State of Smallholders in Agriculture. IFAD Conference on New Directions for Smallholder Agriculture, 44, pp.1-37.
16. Gauster., F.A.a.S., 2006. Perspectivas para la Agricultura Familiar Campesina de Guatemala en un contexto DR-CAFTA. Guatemala: Coordinación de ONG y Cooperativas, CONGCOOP. Manuscript., 2006.
17. Ghamgosar, M., 2011. Multicriteria Decision Making Based on Analytical Hierarchy Process (AHP) in GIS Tourism. Middle-East Journal of Scientific Research , (4), pp.501-07.
18. Gupta, K.K., 1997. Estimation of water harvesting potential for semiarid area using GIS and remote sensing. Remote Sensing and Geographic Information System for Desing and Operation of Water Resources Systems, 242, pp.53-62.
19. Helmreich, B., 2010. Opportunities in rainwater harvesting. Desalination , (251), p.118–124.
20. Isioye, O.A., Shebe, M.W., Momoh, U.O. & Bako, C.N., 2012. A Multi Criteria Decision Support System (MDSS) for identyfing raiwanter harvesting site(s) in Zaria, Kaduna state, Nigeria. Creative Common, 1(5), pp.53-71.
21. Kahinda, J.M. et al., 2008. Developing suitability maps for rainwater harvesting in South Africa. Physics and Chemestry of he Earth, 33, pp.788-99.
22. Kwon, E.-h., 2009. Evaluation method of nuclear nonproliferation credibility. Annals of Nuclear Energy, 36, p.910–916.
23. Mbilinyi, B.P., 2005. Indigenous knowledge as decision support toolin rainwater harvesting. Physics and Chemistry of the Earth , (30), p.792–798.
24. Ming, D.S. et al., 2009. A probabilistic approach to rainwater harvesting systems design and evaluation. Resources, Conservation and Recycling, (53), p.393–399.
25. Ministerio de Ambiente y Recursos Naturales MARN, 2005. Estudio de Vulnerabilidad Actual, Subcuenca del Río San José. Fomento de las Capacidades para la etapa II de adaptación al Cambio Climático en Centroamérica, México y Cuba, pp.3-56.
26. Mkiramwinyi, F.O., 2007. Development of a methodology for identifying potential sites for rainwater harvesting: a case of Makanya catchment in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 32, p.1074–1081.
27. Prinz, D.D., 2006. Runoff Farming. WCA.
28. Samuel, M.P., 2008. Rejuvenation of water bodies by adopting raiwater harvesting and groundwater recharging practices in catchment area. The 12th world lake conference , pp.766-76.
29. Tauer, W. and Prinz, D. , 1992. Runoff Irrigation in the Sahel Region: Appropriateness and Essential Framework Condition. In: Proceedings, Intern. Conference on Advances in Planning Design and Management of Irrigation System as Related to Sustainable Land Use, Leuven, Belgium., pp.945-53.
30. USDA, 1985. National Engineering Handbokk.
指導教授 吳瑞賢、陳繼藩
(Ray-Shyan Wu、Chi-Farn Chen)
審核日期 2013-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明