博碩士論文 100353011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.215.79.116
姓名 張順富(Shun-fu Chang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
(Biocompatibility study of Ni-free Zr-base and Ti-base metallic glasses)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 中低密度高熵合金之合金設計與其微結構變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 醫療植入物因需長期使用,安全性及可靠性是產品的首要條件。金屬玻璃因其優異的機械性質、耐蝕性、抗菌性與良好的生物相容性,近年來許多學者開始進行將其應用於醫療器械的相關研究。
本研究以真空吸鑄法成功製備出Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃,分別利用EDS、XRD、AFM進行成份定量分析、晶體結構以及表面形貌觀察。無鎳金屬玻璃均為非晶結構,其表面粗糙度皆在2.68 nm以下。為評估無鎳金屬玻璃的生物相容性,將小鼠纖維母細胞株L929培養於金屬玻璃上進行觀察細胞貼附於金屬玻璃之型態、細胞毒性測試與金屬離子釋出對細胞影響之分析。其中以Ti40Zr10Cu36Pd14無鎳金屬玻璃生物相容性表現最佳,無論在細胞培養直接接觸法或MTT assay均證實不具有細胞毒性;細胞貼附實驗結果顯示細胞易於生長且細胞膜延展佳,與現行醫療用鈦合金(Ti-6Al-4V)有相似的表現;且其無鎳的成份及極低銅離子溶出比現有醫療用合金具有更良好的生物相容性。
摘要(英) Safety and reliability are crucial issues to medical instruments and implants. In the past few decays, bulk metallic glass draw lots attentions due to their excellent mechanical properties, good corrosion resistance, antibacterial and good biocompatibility, and were considered as an ideal candidate for medical related implants.
Three Ni-free bulk metallic glasses include the Zr42Cu42Al8Ag8, Zr48Cu36Al8Ag8 and Ti40Zr10Cu36Pd14 were studied and evaluated their potential as medical implants. The glassy nature and composition of these three bulk metallic glasses were firstly confirmed by X-ray diffraction analysis and energy dispersive spectrometer. The surface roughness examined by atomic force microscope, all samples perform nano-meter-scale surface roughness. Several biocompatibility tests were carrying out to evaluate these three bulk metallic glasses co-cultural with L929 murine fibroblast cell line. The results of cellular adhesion behavior, cytotoxic, and metallic ion release affection. The optima biocompatibility results occur at Ti40Zr10Cu36Pd14 bulk metallic glass, cell still attached on the petri dish with good adhesion and exhibit the spindle shape after direct contact test. Furthermore, the Ti40Zr10Cu36Pd14 sample showed the lowest Ni and Cu ion release level which correlate to MTT results. Based on the data mentioned above, we believe that Ti40Zr10Cu36Pd14 bulk metallic glass can be one of ideal candidates for medical implant materials.
關鍵字(中) ★ 無鎳鋯基金屬玻璃
★ 無鎳鈦基金屬玻璃
★ 生物相容性
★ 小鼠纖維母細胞
關鍵字(英) ★ Ni-free Zr-base metallic glass
★ Ni-free Ti-base metallic glass
★ Biocompatibility
★ Murine Fibroblast
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 理論基礎 4
2-1 金屬玻璃發展 4
2-2 實驗歸納法 6
2-2-1 合金應包含三種以上的元素 6
2-2-2 主要元素彼此的原子半徑差異須達12 %以上 6
2-2-3 主要成分之混和熱必須為負值 7
2-3 金屬玻璃之製造方法 7
2-3-1 氣態轉固態 7
2-3-2 液態轉固態 8
2-3-3 固態轉固態 8
2-4 金屬玻璃之種類 9
2-5 金屬玻璃之特性 10
2-5-1 機械性質 10
2-5-2 化學性質-耐蝕性 11
2-5-3 磁性質 11
2-5-4 金屬玻璃於醫療器材之應用 12
2-5-5 其他性質 13
2-6 生物相容性 13
2-6-1 細胞毒性評估 14
2-6-2 細胞存活率分析 15
2-6-3 纖維母細胞 15
第三章 實驗步驟與方法 17
3-1 實驗流程 17
3-2 合金材料製備 18
3-2-1 合金鑄錠配製 18
3-2-2 真空電弧熔煉 18
3-2-3 真空吸鑄製程 19
3-3 塊狀無鎳金屬玻璃製備 19
3-3-1 慢速切割及線切割製程 19
3-3-2 研磨及拋光製程 19
3-4 微觀組織分析 20
3-4-1 X光繞射分析(XRD) 20
3-4-2 能譜散佈光譜儀分析(EDS) 21
3-4-3 原子力顯微鏡分析(AFM) 21
3-5 細胞培養 21
3-5-1 儀器介紹 22
3-5-2 材料及試劑 23
3-5-3 培養基製備 24
3-5-4 解凍細胞 25
3-5-5 細胞繼代 25
3-5-6 細胞計數 26
3-6 細胞毒性測試 26
3-6-1 固定細胞及臨界點乾燥 26
3-6-2 直接接觸法 28
3-6-3 細胞存活率分析(MTT assay) 29
3-7 金屬離子溶出檢測 31
3-7-1 感應耦合電漿質譜分析法(ICP-MS) 31
第四章 結果與討論 33
4-1 成分分析 33
4-2 晶體結構分析 33
4-3 表面粗糙度分析 33
4-4 細胞附著型態的觀察 34
4-5 細胞毒性之直接接觸法分析 34
4-6 細胞毒性之細胞存活率分析(MTT assay) 35
4-7 金屬離子溶出檢測 36
第五章 結論 38
參考文獻 40

表目錄
表1-1金屬玻璃之特性[19] 48
表2-1最初金屬玻璃之系統分類[51] 49
表2-2多元系塊狀金屬玻璃種類與發展歷程[63] 50
表2-3多元系塊狀金屬玻璃之成分分類[63] 51
表2-4金屬玻璃之磁特性[56] 52
表3-1細胞資料單[67] 53
表3-2萃取液計算標準表[35] 53
表4-1 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃EDS元素分析 54
表4-2直接接觸法測試定性分析表[35] 55
表4-3 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃直接接觸法定性測定結果 55
表4-4 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃細胞存活率MTT assay測定結果 56
表4-5美國藥典製劑元素雜質規範表[64] 57
表4-6 MTT assay 1天萃取培養基ICP-MS元素分析 58
表4-7 MTT assay 3天萃取培養基ICP-MS元素分析 58
表4-8 MTT assay 5天萃取培養基ICP-MS元素分析 58

圖目錄
圖1-1 結晶材料顯微結構圖[40] 59
圖1-2 金屬玻璃顯微結構圖[40] 59
圖2-1 雙輪連續急冷法[38] 60
圖2-2 合金系統之分類圖[63] 60
圖2-3 結晶與非結晶之X光繞射結果[40] 61
圖2-4 金屬玻璃受外力之分子移動型態[54] 61
圖2-5 金屬玻璃之機械強度比較[55] 62
圖2-6 醫療器材之生物相容性評估架構表[35] 63
圖2-7 細胞代謝產生formazan之反應圖[68] 64
圖3-1 實驗流程圖 65
圖3-2 數位電子天秤 66
圖3-3 電弧熔煉爐 66
圖3-4 氬焊機 67
圖3-5 合金鑄錠外觀:鈦基(左),鋯基(右) 67
圖3-6 無鎳金屬玻璃板材外觀:鈦基(左),鋯基(右) 67
圖3-7 電腦數值控制線切割機外觀 68
圖3-8無鎳金屬玻璃塊材拋光後外觀:(左) Zr42Cu42Al8Ag8,(中) Zr48Cu36Al8Ag8,(右)Ti40Zr10Cu36Pd14 68
圖3-9 對照組金屬及合金塊材拋光後外觀:(左) 純鋯,(中) 純銅,(右) Ti-6Al-4V 68
圖3-10 研磨拋光機 69
圖3-11 X光繞射分析儀 69
圖3-12 能量散佈光譜儀 70
圖3-13 原子力顯微鏡 70
圖3-14 無菌操作台 71
圖3-15 光學顯微鏡 71
圖3-16 離心機 72
圖3-17 高溫高壓滅菌釜 72
圖3-18 血球計數盤 73
圖3-19 二氧化碳培養箱 73
圖3-20 低溫震盪培養箱 74
圖3-21 微量盤式分光光譜儀 74
圖3-22 鍍金機 75
圖3-23 臨界點乾燥機 75
圖3-24 掃描式電子顯微鏡 76
圖3-25 感應耦合電漿質譜分析儀 76
圖4-1 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃XRD繞射圖 77
圖4-2 Ti-6Al-4V表面粗糙度(a) 2D (b) 3D 78
圖4-3 Zr42Cu42Al8Ag8無鎳金屬玻璃表面粗糙度(a) 2D (b) 3D 78
圖4-4 Zr48Cu36Al8Ag8無鎳金屬玻璃表面粗糙度(a) 2D (b) 3D 79
圖4-5 Ti40Zr10Cu36Pd14無鎳金屬玻璃表面粗糙度(a) 2D (b) 3D 79
圖4-6 利用SEM以10,000倍率,觀察小鼠纖維母細胞L929貼附各金屬及合金之狀態 80
圖4-7 利用SEM以5,000倍率,觀察小鼠纖維母細胞L929貼附各金屬及合金之狀態 81
圖4-8 利用SEM以3,000倍率,觀察小鼠纖維母細胞L929貼附各金屬及合金之狀態 82
圖4-9 利用SEM以1,000倍率,觀察小鼠纖維母細胞L929貼附各金屬及合金之狀態 83
圖4-10小鼠纖維母細胞L929接觸各金屬及合金周圍之狀態 84
圖4-11小鼠纖維母細胞L929接觸各金屬及合金下方之狀態 85
圖4-12各金屬及合金浸泡於萃取培養基1天之狀態 86
圖4-13萃取1天培養基刺激細胞,經由MTT反應後的細胞染色狀態 87
圖4-14 各金屬及合金浸泡於萃取培養基3天之狀態 88
圖4-15萃取3天培養基刺激細胞,經由MTT反應後的細胞染色狀態 89
圖4-16 各金屬及合金浸泡於萃取培養基5天之狀態 90
圖4-17萃取5天培養基刺激細胞,經由MTT反應後的細胞染色狀態 91
圖4-18 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃1、3、5天MTT assay定量分析結果 92
圖4-19 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃檢測1、3、5天萃取培養基金屬離子溶出濃度 92
圖4-20 Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃檢測1、3、5天萃取培養基銅離子溶出濃度 93
參考文獻 [1]. W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Mater. Sci. Forum, vol.225-227, 1996, pp.35.
[2]. A. Inoue, M. Koshiba, T. Zhang and T. Masumoto, “New bulk amorphous Fe-(Co, Ni)-M-B (M=Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties”, J. Appl. Phys, vol.83, 1998, pp.1967-1972.
[3]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications”, Springer, 2001.
[4]. M. Naka, K. Hashimoto and T. Masumoto, “Change in corrosion behavior of amorphous Fe-P-C alloys by alloying with various metallic elements”, J. Non-Cryst. Solids, vol.31, 1979, pp.355-365.
[5]. T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Mater. Lett., vol.57, 2003, pp.3022-3025.
[6]. B. M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, “The effect of phosphorus addition on the corrosion behavior of amorphous Fe-8Cr-P alloys in 9M H2SO4”, Corros. Sci., vol.37, 1995, pp.709-722.
[7]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution”, Mater. Sci. Eng., vol.318, 2001, pp.77-86.
[8]. C. A. C. Sousa and C. S. Kiminami, “Crystallization and corrosion resistance of amorphous FeCuNbSiB”, J. Non-Cryst. Solids, vol.219, 1997, pp.155-159.
[9]. W. H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A.Carmichael Jr. and J.L. Wright, “Localized corrosion behavior of a zirconium based bulk metallic glass relative to its crystalline state”, Intermetallics, vol.10, 2002, pp.1157-1162.
[10]. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb(or Ta)0–10B20 amorphous alloys”, J. Appl. Phys., vol. 83, 1998, pp. 1967-1974.
[11]. Y. Hara, T. Ando, R.C. O’Handley and N.J. Grant, “Fine-particle magnetism in the devitrified metallic glass Fe43Cr25Ni20B12”, Jpn. J. Appl. Phys., vol.62,1987, pp.1948-1951.
[12]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., vol.226-228, 1997, pp.357-363.
[13]. A. Inoue and J.S. Gook, “Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region”, Mater. Trans., JIM, vol.36, 1995, pp.1180-1183.
[14]. A. Inoue and J.S. Gook, “Effect of Additional Elements(M) on the Thermal Stability of Supercooled Liquid in Fe72-xAl5Ga2P11C6B4Mx Glassy Alloys”, Mater. Trans., JIM, vol.37, 1996, pp.32-38.
[15]. A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, “Bulk Nd-Fe-Al Amorphous Alloys with Hard Magnetic Properties”, Mater. Trans., JIM, vol.37, 1996, pp.99-108.
[16]. A. Inoue, T. Zhang and A. Takeuchi, “Preparation of Bulk Pr-Fe-Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties”, Mater. Trans., JIM, vol.37, 1996, pp.1731-1740.
[17]. A. Inoue and A. Makino, “Improvement of Soft Magnetic Properties of Nanocrystalline Fe-M-B (M=Zr and Nb) Alloys and their Applications”, Nanostruct. Mater., vol.9, 1997, pp.403-412.
[18]. A. Inoue, M. Koshiba, T. Itoi and A. Makino, “Ferromagnetic Co–Fe–Zr–B amorphous alloys with glass transition and good high-frequency permeability”, Appl. Phys. Lett., vol.73, 1998, pp.744-746.
[19]. A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Mater. Sci. Eng., vol.304-306, 2001, p.1.
[20]. S.L. Zhu, X.M. Wang, F.X. Qin and A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application”, Mater. Sci. Eng., vol.459, 2007, pp.233-237.
[21]. J. J. Oak and A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Mater. Sci. Eng., vol.449-451, 2007, pp.220-224.
[22]. C.L. Qiu, Q. Chen, L. Liu, K. C. Chan, J. X. Zhou, P. P. Chen and S. M. Zhang, “A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility”, Scripta Mater., vol.55, 2006, pp.605-608.
[23]. H. H. Huang, Y. S. Sun, C. P. Wu, C. F. Liu, P. K. Liaw and W. Kai, “Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications”, Intermetallics, vol.30, 2012, pp.139-143.
[24]. N. Hua, L. Huang, J. Wang, Y. Cao, W. He, S. Pang and T. Zhang, “Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study”, J. Non-Cryst. Solids, vol.358, 2012, pp.1599-1604.
[25]. Z. Liu, L. Huang, W. Wu, X. Luo, M. Shi, P. K. Liaw, W. He and T. Zhang, “Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications”, J. Non-Cryst. Solids, vol.363, 2013, pp.1-5.
[26]. L. Liu, C. L. Qiu, C. Y. Huang, Y. Yu, H. Huang and S. M. Zhang “Biocompatibility of Ni-free Zr-based bulk metallic glasses”, Intermetallics, vol.17, 2009, pp.235-240.
[27]. H. F. Li, Y. F. Zheng, F. Xu and J. Z. Jiang “In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials”, Mater. Lett., vol.75, 2012, pp.74-76.
[28]. M. Niinomi, “Metals for Biomedical Devices”, Woodhead Publishing, 2010.
[29]. C. Leyens and M. Peters, “Titanium and Titanium Alloys: Fundamentals and Applications”, Wiley, Weinheim, 2003.
[30]. B. Basu, D. Katti and A. Kumar, “Advanced Biomaterials — Fundamentals, Processing, and Applications”, Wiley, Weinheim, 2009.
[31]. M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review”, Prog. Mater Sci., vol.54, 2009, pp.397-425.
[32]. M. Long and H.J. Rack, “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, vol.19, 1998, pp.1621-1639 .
[33]. L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac, and N. Jaffrezic, “Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates”, Mater. Sci. Eng., vol.21, 2002, pp.157-165.
[34]. C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault, and L. Ponsonnet, “Nitinol surface roughness modulates in vitro cell response: a Comparison between fibroblasts and osteoblasts,” Mater. Sci. Eng., vol.25, 2005, pp.51-60.
[35]. International Organization for Standardization, “ISO-10993: Biological Evaluation of Medical Devices”, 3rd, 2003.
[36]. A. Brenner, D. E. Couch and E. K. Williams, “Electro-deposition of alloys of phosphorus and nickel or cobalt”, J. Res Nat. Bur. Stand., vol.44, 1950, pp.109-112.
[37]. W. Klement, R. H. Willens and P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys”, Nature, vol.187, 1960 , pp.869-870.
[38]. H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Rev. Sci. Instrum., vol.41, 1970, p.1237.
[39]. H. Liebermann and C. Graham, “Production of amorphous alloy ribbon and effect of apparatus parameters on ribbon dimensions”, IEEE Trans. Mang., vol.12, 1976, pp.921-923.
[40]. 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149期,1999年,pp.154-159。
[41]. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Appl. Phys. Lett., vol.43,1983, pp.1017-1019.
[42]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, p.7.
[43]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., vol.226-228, 1997, pp.357-363.
[44]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, vol.32, 1991, pp. 609-616.
[45]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, vol.33, 1992, pp.937-945.
[46]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng, vol.226-228, 1997, pp.357-363.
[47]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Mater. Trans. JIM, vol.36,1995, pp.866-875.
[48]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metall. Mater. Trans., vol.29, 1998, pp.1779-1793.
[49]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Mater. Sci. Forum, vol.269-272, 1998, pp.855-864.
[50]. R. E. Reed-Hill, Physical Metallurgy Principles 2nd, D. Van Nostrand Company, Inc., USA, 1994.
[51]. R. W. Cahn, P. Hassen and E. J. Kramer, “Materials Science of Technology”, vol.9, New York, USA, 1991.
[52]. G. N. Jackson, “R.F. sputtering”, Thin Solid Film, vol. 5, pp.209-246, 1907.
[53]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, New York 1969.
[54]. 鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
[55]. A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp. 2243-2267,.
[56]. A. Inoue, “Bluk Amouphous Alloys Practical Characteristics and Application Institute for Material Reserch”, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
[57]. M. E. McHenry, M. A. Willard and D. E. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets”, Prog. Mater Sci., vol.44, 1999, pp. 291-433.
[58]. F. X. Qin, X. M. Wang, G. Q. Xie and A. Inoue, “Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses with potential for biomedical applications”, Intermetallics, vol.16, 2008, pp.1026-1030.
[59]. J. C. Wataha, P. E. Lockwood, A. Schedle, “Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures”, J Biomed Mater., vol.52, 2000, pp.360-364
[60]. S. R. Elliot, “Physics of Amorphous Material”, 2nd Ed. , USA, 1990.
[61]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, vol.35, 1994, p.95.
[62]. Richard Zallen, ”The Physics of Amorphous Solids”, A Wiley-Interscience, Canada, 1983.
[63]. A. Inoue, ”Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., vol. 48, 2000, p. 279
[64]. The United States Pharmacopeial Convention, “U.S. Pharmacopeia / National Formulary” 37th edition, 2003.
[65]. J. A. Lee, I. D. Marsden and C. N. Glover, “The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies”, Aquat Toxicol, vol.99, 2010, pp. 65-72.
[66]. J. C. Wataha, C. T. Ylardm and Z. Sun, “Effect of cell line on in vitro metal ion cytotoxicity” , Dent. Mater. J., vol.10, 1994, pp. 156-161.
[67]. 財團法人食品工業發展研究所生物資源保存及研究中心。網址:http://www.bcrc.firdi.org.tw/
[68]. P. Brescia, and P. Banks, “Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch™ Microplate
Spectrophotometer”, BioTek Instruments, Inc., Winooski, VT
指導教授 鄭憲清(Shian-ching Jang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明