博碩士論文 100353017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:44.192.51.24
姓名 高自強(Chin-Chiang Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 銅電鍍製程於微小結構製作之應用
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 平面雙軸式磁通閘之分析與應用
★ 低頻振動能量擷取器之設計★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計
★ 微粒子於溶液中操控之模擬★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理
★ 平面雙軸式磁通閘之製作與改良★ 單一自由度微型電熱鑷子之設計與分析
★ 加工液濁度檢測器之設計★ Underwater Position Control of Particles
★ 立體微型振動發電機之研製★ 三維導電微成型技術開發應用於微機電系統之研究
★ 用於電火花加工的油質感測器★ 油液污濁度檢測器之設計與改良
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用電化學沈積方式製作出微米等級的三維元件,在研究過程中,將陽極軸與電鍍試片之間的距離固定,逐步的調整電源供應器的電流與三軸移載平台的移動速度,以製作出外觀平滑且完整的結構。
在研究過程中,發現鍍浴需要循環。用以將電鍍過程中電化學反應在陽極軸上產生的氣泡沖離陽極軸,並補充在電沈積過程中鍍浴金屬離子的消耗。如果循環量不足,來不及沖走電化學反應產生的氣泡,則製作出的三維結構將會形成不平滑的塊狀組織。
由於電化學沈積的速率非線性,所以無法使三軸移載平台的Z軸配合電化學沈積的速度來移動,因此本研究是先固定電源供應器輸出之電流,然後調整移動速度來配合沈積速度,試圖取得一個平衡點。即使如此電化學沈積的速度與陽極軸移動速度依然會有些微的差距,此時,我們用陽極軸與電鍍試片的間距來彌補電化學沈積的速度與陽極軸移動速度之間的速度差,以解決此現象所延伸出的相關問題。
本研究的目標在於尋求一個可以改善鍍物品質的方法,而在本研究中也已得到初步的解決方案,並且成功的製作出一些可用的結構。未來我們可以嘗試將此製程應用在其他製造領域,進一步的將機構細微化和大幅度降低製造成本。
摘要(英) Electrochemical deposition method was used in this study to produce three-dimensional structure parts in micron grade. We fixed distance of anode shaft and plated specimen then adjust power of the current supply and speed of triaxial positioning table gradually in order to create the smooth appearance and complete structures.
We found that the cycle of plating bath was needs to wash bubble which generated from electrochemical reaction in plating process away from anode axis and supplied metal ions of planting bath which was consumed in electrochemical process. If the amount of cycle is less than the needs which induced too late to wash away the bubbles generated by electrochemical reactions that will make three-dimensional structures forms rough lumps.
Because of the nonlinear of electrochemical deposition rate, the velocity of Z-axis shift cannot work with it. We fixed the output of power supply, and then adjusted the speed of movement in order to match the deposition rate and trying to strike a balance. However, there was still slight difference between the rate of electrochemical deposition and Z-axis shift. We used the vertical space of anode shaft and plated specimen to compensate for the differential rate and figured out the relevant problem.
The objective of this study is to seek a method which could improve the quality of the plating. In this study we have already found the preliminary solution and produced some of the useful structures successfully. We can try to use this process in other manufacturing field and make mechanism miniaturize and cost down.
關鍵字(中) ★ 微電鍍
★ 電化學沈積
★ 陽極軸
關鍵字(英) ★ micro-electroplated
★ electrochemical deposition
★ anode shaft
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
一、緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.4 章節提要 4
二、理論基礎 5
2.1 理論基礎 5
2.1.1 電鍍原理 5
2.1.2 微電鍍原理 7
2.2 其它微製造技術 10
2.2.1 微電鑄技術 11
2.2.2 三維列印技術 13
2.2.3 放電加工技術 16
2.2.4 雷射加工技術 18
三、實驗架構 20
3.1 實驗設備 20
3.1.1 陽極軸 21
3.1.2 電鍍試片 23
3.1.3 鍍浴組成 26
3.1.4 銅線 27
3.1.5 電源供應器 27
3.1.6 循環泵浦 28
3.1.7 控制電腦 28
3.1.8 自動移載滑台 29
3.2 實驗方法及流程 30
3.3 量測儀器 31
3.3.1 工具顯微鏡 31
3.3.2 超音波清洗機 31
3.3.3 三用電錶 31
3.3.4 CHY 24CR LCR METER 32
四、樣本及量測 33
4.1 不同製程條件對於樣本外觀的影響 33
4.2 不同製程電流下理論和實際電阻值之差異 37
4.2.1 量測原理 37
4.2.2 樣本量測 39
五、討論 45
5.1 實驗工具對微電鍍之影響 45
5.1.1 陽極軸材質對電鍍析出之影響 45
5.1.2 電鍍試片絕緣對微電鍍之影響 45
5.2 製程參數對微電鍍之影響 46
5.2.1 製程電流 46
5.2.2 陽極軸移動速度 46
5.2.3 陽極軸移動方向 47
5.2.4 鍍浴的選用 47
5.2.5 鍍浴循環 49
5.2.6 鍍浴濃度 49
5.3 導電特性討論 50
5.3.1 鍍物外觀對於導電性之影響 50
5.3.2 鍍物與一般導體之比較 50
六、結論與未來展望 51
6.1 結論 51
6.2 未來展望 51
參考文獻 52
參考文獻 [1] J.D. Madden, S.R. Lafontaine and I.W. Hunter (1995). Fabrication by
Electrodeposition: Building 3D Structures and Polymer Actuators, Sixth
International symposium on Micro Machine and Human Science, 77-81.
[2] J.D. Madden and I.W. Hunter (1996). Three Dimensional Micro-fabrication
by localized Electrochemical Deposition, Journal of Microelectromechanical
system, Vol. 5(1), 24-32.
[3] I.W. Hunter, S.R. Lafontaine and J.D. Madden (1997). United States Patent
No. 5641391. Washington, DC: U.S. Patent and Trademark Office.
[4] E.M. El-Giar, U. Cairo and D.J. Thomson (1997). Localized electrochemical
plating of interconnectors for microelectronic. Proc. IEEE Conf. on
Communications, Power and Computing vol. 22-23, 327-32.
[5] E.M. El-Giar, R.A. Said, G.E. Bridges, and D.J. Thomson (2000).
Localized electrochemical Deposition of Copper Microstructures. Journal of
the Electrochemical Society, 147 (2), 586-591.
[6] S.H. Yeo, J.H. Choo and K.S. Yip (2000) Localized electrochemical
deposition the growth behavior of nickel micro-columns. Proc. SPIE, 4174, 30-39.
[7] S.H. Yeo, J.H. Choo and K.S. Sim (2002) . On the effects of ultrasound
vibration on localized electrochemical deposition. J. Micromech. Microeng, 12, 271-279.
[8] S.H. Yeo, J.H. Choo (2001). Effects of rotor electrode in the fabrication of
high aspect ratio microstructures by localized electrochemical deposition. J.
Micromech. Microeng, 11, 435-442.
[9] J.H. Choo, S.H. Yeo and F.F. Tan (2004). Flexible tooling for localized
electrochemical deposition with wire-electrodischarge grinding.
Microsystem Technologies, 10, 127-36.
[10] J.H. Choo and S.H. Yeo (2001, March 16). Enhancement of spatial resolution of microfabricated columns using localized electrochemical deposition. Proc. SPIE, 4236, 260-71.
[11] R.A. Said (2001). Localized electrochemical deposition of copper microstructures(II): artifacts of electrode-tip geometry. Proc. Electrochem. Soc. 8, 112-119.
[12] R.A. Said (2003). Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling. Nanotechnology, 14, 523-531.
[13] R.A. Said (2003). Shape formation of microstructures fabricated by localized electrochemical deposition. J, Electrochem. Soc. 150, C549-557.
[14] R.A. Said (2004). Adaptive tip-withdrawal control for reliable micro-fabrication by localized electro-deposition. Journal of Microelectromechanical Systems, 13, 822-832.
[15] R.A. Said (2004). Localized electro-deposition (LED): the march toward process development. Nanotechnology, 15, 649-659.
[16] S.K. Seol, et al. (2004). Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. Electrochem. Solid-State Lett.,7-9, C95-97.
[17] S.K. Seol, J.T. Kim, J.H. Je, Y. Hwu and G. Margaritondo(2007). Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-free Localized Electrochemical Deposition. Electrochem. Solid-State Lett. 10(5) C44-C46.
[18] S.K. Seol, J.T. Kim, J.H. Je, Y. Hwu, and G. Margaritondo (2008). Three-Dimensional (3D) Polypyrrole Microstructures with High Aspect Ratios Fabricated by Localized Electropolymerization. Macromolecules, 41 (9), 3071-3074.
[19] C.S. Lin, C.Y. Lee, J.H. Yang and Y.S. Huang (2005). Improved copper microcolumn fabrication by localized electrochemical deposition. Electrochem. Solid-State Lett. C125-129.
[20] C.Y. Lee, C.S. Lin, J.H. Yang and B.R. Lin (2008). Localized electrochemical deposition process improvement by using different anodes and deposition directions. J. Micromech. Microeng. 18, Article no.105008.
[21] 郭佳儱(民88)。 微放電加工技術於 MEMS 之應用。 機械月刊,
25(11),304-313。
[22] K.D. Wise (1991). Integrated Micro-electro-mechanical Systems – A Perspective on MEMS in the 90s. Proceedings of Micro Electro Mechanical Systems ’91, IEEE, 33-38.
[23] William B. Scott (1993). Micro-Machines Hold Promise for Aerospace. Aviation Week & Space Technology, March 1, 36-39.
[24] Working Group of Prime Minister’s Science and Engineering Council in Australia (1992, December 14). Micro Engineering and Micro Machine: A New Threshold for Australian Industry. The 7th Prime Minister′s Science and Engineering Council, 16-17.
[25] N. Nakajima (1993, Oct) Challenge to New Artifacts : Micromachines. Proceeding of Workshop on Micromachine Technologies and Systems, Tokyo, 8-14.
[26] 翁政義(民91年9月21日)。 奈米工程暨微系統技術的展望。 奈米工
程暨微系統技術研討會及展覽國科會微機電系統成果發表會。
[27] 楊啟榮,強玲英,黃奇聲(民89)。 微系統 LIGA 製程之精密電鑄技術。
科儀新知,21(6)。
[28] D.T. Pham and R.S. Gault (1998). A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 38, 1257-1287.
[29] K. Maeda, T.H.C. Childs (2004). Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. Journal of Materials Processing Technology, 149, 609-615.
[30] P.M. Pandey, N.V. Reddy, S.G. Dhande, (2003). Real time adaptive slicing for fused deposition modeling. International Journal of Machine Tools and Manufacture, 43(1), 61-71
[31] H. W. Charles (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent No.4575330 A. Washington, DC: U.S. Patent and Trademark Office.
[32] D. Klosterman, B. Priore, R. Chartoff (1997). Laminated Object manufacturing of Polymer Matrix Composites. The 7th International Conference on Rapid Prototyping, 283-292.
[33] 鳳誠三郎、蒼藤尚雄 (民65)。 放電加工。 台南:復漢出版社。
[34] 仲成儀器股份有限公司(民84)。 雷射應用光學實驗裝置。 台北:全華科技圖書有限公司,53-67。
[35] 吳嘉殷(2013)。雙頻帶微型電磁式發電機之研製。碩士論文。桃園:
中央大學機械工程學研究所。
[36] 熊楚強,王月(1997)。”電化學”。 台北:文京出版社。
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2015-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明