博碩士論文 100353027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.207.130.162
姓名 張光華(Kuang-hua Chang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 電化學放電加工應用於單晶矽表面粗糙化之研究
(Study on texturing of mono-silicon by using Electrochemical Discharge Machining)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了提高太陽能電池光轉化效率,現今加工法大多使用高強酸鹼在矽晶片表面進行化學蝕刻,使其表面粗糙化藉以增加光反射次數,但是化學蝕刻法不僅加工時間長且對環境危害較大。相較於傳統太陽能表面粗糙化,本研究提出以電化學放電對於P型單晶矽進行表面粗糙化加工,加工時間短且相較於傳統化學蝕刻出的金字塔結構或是火山坑結構,電化學放電加工法可加工出較高表面粗糙度且多孔狀結構。
本研究使用不鏽鋼電極為負極,正極以石墨作為輔助電極,電解液為氫氧化鉀,加工參數為加工電壓、加工時間、加工間隙、電解液濃度、添加液濃度、脈衝頻率與衝擊係數等,以電化學放電加工粗糙化後進行表面粗糙度量測,並利用三維雷射掃描式顯微鏡及掃描式電子顯微鏡觀察表面形貌。
實驗過程中發現, 添加適當濃度的乙醇可以幫助孔洞擴大並且提高表面粗糙化結果。在適當的加工參數加工間隙為200μm、電壓為48V、氫氧化鉀濃度為3M、乙醇濃度為4wt%、電化學放電加工1分鐘後其表面粗糙度可由0.417μm升至0.915 μm。利用積分式粗糙面反射率量測儀檢測,測量結果顯示加工前平均反射率為29.6%,經表面粗糙化後降低至12.7%。
摘要(英) In order to improve the light conversion efficiency of solar cells, recently processing method use the strong chemical substances to etch silicon surface. Although acid or alkaline texturing can increase the frequency of the light reflecting, this kind of texturing process not only has long processing time but also is harmful to the environment. Compared with the conventional surface texturing process which generates chemical etched pyramid structure or crater structure , this study proposes texturing P type mono-crystalline silicon by electrochemical discharge machining (ECDM). ECDM method has the advantage of short processing time and can generate a higher surface roughness and the porous structure.
In this study, stainless steel was used as negative electrode. The graphite was used as the positive electrode acting as the auxiliary electrode. The potassium hydroxide was used as the electrolyte. The processing parameters include the machining voltage, the processing time, the machining gap, the electrolyte concentration, the additive agent concentration, pulse frequency and duty factor, etc. The surface roughness was measured using surface roughness tester. The surface morphology was observed using SEM and three-dimensional laser scanning microscope.
The result of experiments reveals that appropriate concentrations of ethanol can expand the size of the pores and enhance surface roughening effect. The appropriate processing parameters are a machining gap of 200μm, voltage of 48V, concentration of potassium hydroxide of 3M, concentration of ethanol of 4%. The electrochemical discharge machined surface roughness was increased from 0.417μm to 0.915μm using one minute processing time. The average reflectance rate of the textured surface was decreased from 29.6% to 12.7% measuring by using integration spectroscopic reflectometer.
關鍵字(中) ★ 電化學放電加工
★ 表面粗糙化
★ 單晶矽
關鍵字(英) ★ Electrochemical discharge machining
★ texture
★ p-type silicon
論文目次 中文摘要…………………………………………………………………………………………………i
英文摘要…………………………………………………………………………………………………ii
謝誌…………………………………………………………………………………………………………iii
目錄…………………………………………………………………………………………………………iv
圖目錄……………………………………………………………………………………………………viii
表目錄……………………………………………………………………………………………………x
第一章緒論……………………………………………………………………………………………1
1-1前言…………………………………………………………………………………………………1
1-2研究動機與目的……………………………………………………………………………2
1-3文獻回顧…………………………………………………………………………………………3
1-3-1探討電化學放電加工機制之相關研究………………………………3
1-3-2探討電化學放電加工應用在矽晶材料之相關研究…………5
1-3-3探討矽晶太陽能表面粗糙化之相關研究……………………………5
1-4研究方法…………………………………………………………………………………………6
第二章實驗基礎理論……………………………………………………………………………7
2-1電化學放電加工的原理………………………………………………………………7
2-1-1電化學放電加工的放電火花產生過程………………………………9
2-1-2電化學放電加工的材料移除機制………………………………………11
2-2放電加工的原理……………………………………………………………………………12
2-2-1放電加工移除機制…………………………………………………………………13
2-2-2放電加工參數設定及其影響…………………………………………………16
2-2-3放電加工的優缺點…………………………………………………………………19
2-3電化學加工的基礎理論………………………………………………………………20
2-3-1電化學的反應機制…………………………………………………………………20
2-3-2法拉第定律(Faraday’s Law)………………………………………22
2-3-3歐姆定律(Ohm’s law)………………………………………………………22
2-3-4電極電位-金屬與溶液界面雙電層理論………………………………23
2-3-5陽極極化曲線及其特徵……………………………………………………………24
2-4表面粗糙度………………………………………………………………………………………26
第三章實驗設備與材料…………………………………………………………………………28
3-1 基礎實驗相關設備………………………………………………………………………28
3-1-1電子天秤………………………………………………………………………………………28
3-1-2去離子水系統………………………………………………………………………………28
3-1-3電磁加熱攪拌器…………………………………………………………………………29
3-1-4超音波洗淨機………………………………………………………………………………29
3-1-5微電化學放電加工機…………………………………………………………………30
3-1-6電源供應器……………………………………………………………………………………30
3-1-7數位合成函數波信號產生器………………………………………………………31
3-1-8示波器……………………………………………………………………………………………31
3-1-9擩動泵浦………………………………………………………………………………………32
3-1-10二維表面粗度輪廓形狀量測儀………………………………………………32
3-1-11表面真空蒸鍍機…………………………………………………………………………33
3-1-12掃描式電子顯微鏡………………………………………………………………………33
3-1-13三維雷射掃描式顯微鏡……………………………………………………………34
3-1-14積分式粗糙面反射率量測儀……………………………………………………34
3-2 實驗材料……………………………………………………………………………………………35
3-2-1單晶矽試片……………………………………………………………………………………35
3-2-2電解液……………………………………………………………………………………………36
3-2-3不鏽鋼電極……………………………………………………………………………………37
3-2-4石墨輔助電極………………………………………………………………………………38
3-2-5乙醇添加劑……………………………………………………………………………………39
第四章結果與討論……………………………………………………………………………………40
4-1實驗簡介……………………………………………………………………………………………40
4-2實驗設備……………………………………………………………………………………………41
4-2-1電化學放電加工設備…………………………………………………………………41
4-3實驗流程與方法………………………………………………………………………………42
4-3-1試片製作………………………………………………………………………………………43
4-3-2電解液調製…………………………………………………………………………………43
4-3-3 Z軸校正……………………………………………………………………………………44
4-3-4加工前表面量測…………………………………………………………………………45
4-3-5實驗參數之設定…………………………………………………………………………45
4-3-5-1 加工間隙之設定…………………………………………………………………46
4-3-5-2 加工時間的設定…………………………………………………………………47
4-3-5-3 實驗參數之設定…………………………………………………………………48
4-4結果與討論………………………………………………………………………………………49
4-4-1乙醇濃度對表面粗糙度之影響………………………………………………49
4-4-2加工電壓對表面粗糙度之影響………………………………………………52
4-4-3電解液濃度對表面粗糙度之影響……………………………………………55
4-4-4脈衝頻率對表面粗糙度之影響…………………………………………………57
4-4-5衝擊係數對表面粗糙度之影響…………………………………………………58
4-4-6加工前後之比較……………………………………………………………………………59
第五章結論與未來展望……………………………………………………………………………61
5-1結論………………………………………………………………………………………………………61
5-2未來與展望…………………………………………………………………………………………62
參考文獻………………………………………………………………………………………………………63
參考文獻 [1] Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao,A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells”, optics communications, Vol.172, pp.139-151,1999.
[2] Kurafuji and K. Suda, Electrical discharge drilling of glass, Annals of the CIRP ,16 (1968) 415–419.
[3] V.Reghuram, Expermental observations of the ECD phenomena, Dissertation Thesis, Indian Institute of Technology, Kanpur, India, 1983
[4] Basak and A.Ghosh, Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification, Journal of Material Processing Technology,62(1996) 46-53.
[5] V. K. Jain, P. M. Dixit, and P.M. Pandey, On the Analysis of Electro Chemical Spark Machining Process, International Journal of Machine Tools & Manufacture, (1999)165-186.
[6] Bhattacharyya, B. N. Doloi, and S. K. Sorkhel ,Experimantal analysis an the electrochemical conference on precision engineering, ICPE, Taipei, Taiwan, (1997)715720.
[7] C.T. Yan, S.S. Ho, and B.H. Yan, Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM), Key Engineering Materials, 196 (2001) 149–166.
[8] Kulkarmi, R.Sharan and G.K. Lai, "An experiment study of discharge mechanism in electrochemical discharge machining," International Journal of Machine Tools and Manufacture, Vol.42,pp.1121-1127,2002.
[9] V.Fascio, R.Wuthrich, and H.Bleular, Spark assisted chemical engraving in the light of electrochemistry, Electrochimica Acta, 49(2004)3997-4003.
[10] R.Wuthrich, V.Fascio and H.Bleuler,"A stochastic model for electrode effects,"Electrochimica Acta , Vol.49,pp.4005-4010,2004
[11] V.Fascio, R. Wuthrich and H.Bleuler,"Spark assisted chemical engraving in the light of electrochemistry" Electrochimica Acta, Vol.49,pp.3997-4003,2004
[12] V.Fascio, R. Wuthrich and H.Bleuler,"Spark assisted chemical engraving in the light of electrochemistry" Electrochimica Acta, Vol.49,pp.3997-4003,2004
[13] R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-85, 2006.
[14] M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
[15] C.K Yang, C.P. Cheng, C.C. Mai, A.C. Wang, J.C. Hung, B.H. Yan, "Effect of surface roughness of toolelectrode material in ECDM performance," Internal Journal of Machine Tools & Manufacture, Vol.50,pp.1088-1096,2010.
[16] P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer, and R. Schuster,“Electrochemical Micromachining of p-Type Silicon”, J. Phys. Chem. B,Vol. 108, pp. 14434-14439 (2004).
[17] 紀朝傑,“電化學矽加工之研究與分析",國立中央大學碩士論文 (2008)。
[18] 張皓瑋,“電解液對電化學矽加工影響性之分析與研究",國立中央大學碩士論文 (2013)。
[19] 王晨宇,“單晶矽材料電化學放電鑽孔及同軸電度之研究",國立中央大學碩士論文 (2013)。
[20] Gee, J. and Wenham, S., 1993 Advanced Processing of Silicon Solar Cells, Tutorial Notebook, 23rd. IEEE Photovoltaic Specialists Conf.
[21] King, D.L. and Buck, M.E., 1991. Experimental Optimization of an Anisotropic Etching Process for Random Texturization fo Silicon Solar Cells, 1991. Proc. 22nd IEEE Photovoltaic Specialists Conf., pp. 303-308.
[22] Sarti, D., Le, Q.N., Bastide, S., Goaer, G. and Ferry, D., 1995. Thin Industrial Multicrystalline Solar Cells and Improved Optical Absorption, Proc 13th European Photovoltaic Solar Energy Cof., pp.25-28
[23] Einhaus, R., Van kerschaver, E., Szluficik, J., Nijs, J. and Mertens, R., 1997. Isotropic texturing of texturing of multicrystalline silicon wafers with acidic texturing solutions, Proc. 26th IEEE Photovoltaic Specialists Conf. pp. 167-170
[24] P.K. Singh*, R. Kumar, M. Lal, S.N. Singh, B.K. Das "Electiveness of anisotropic etching of silicon in aqueous alkaline solutions", Solar Energy Materials & Solar Cells 70 (2001) 103}113
[25] Zubel*, M. Kramkowska"Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions",Sensors and Actuators A 115 (2004) 549–556
[26] Bhattacharyya, B. N. Doloi, S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials ”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
[27] V. Fascio, R. Wüthrich, H. Bleuler, “Spark assisted chemical engraving in the light of electrochemistry ”, Electrochimica Acta, Vol. 49, pp. 3997-4003, 2004.
指導教授 顏炳華(Piin-hwa Yan) 審核日期 2014-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明