博碩士論文 100353028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.226.96.61
姓名 陳敏郎(Min-Lang Chen)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 液冷式散熱模組之鰭片最佳化設計與實驗
(Investigation On Optimum Design Of The Heat Sinks Of The Liquid Cooling Module)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為因應巨量網路存取的需求所衍生的伺服器散熱問題,本文擬開發1U伺服器適用的CPU液冷式散熱座,首先採用數值模擬方法,找出散熱座的最適鰭片間距,並導入斷續型的鰭片設計,找出適當的分段數,以提高流體的擾動度,並避免過多斷續鰭片增加摩擦力。有鑑於小間距的連續式鰭片和多段分割式鰭片的加工成本較高,基於成本考量,必須在較大鰭片間距及較少分段數下,得到較佳的散熱效能,故導入交錯式設計鰭片,結果發現,在鰭片間距2.5mm的條件下,分割鰭片隨流長度為4段,且交錯排列的狀況下,可以得到比小間距(0.5mm)連續式鰭片更佳的散熱效果。
為了進一步驗證模擬計算結果,本文採用電腦數值控制加工製程實作鰭片間距0.5mm的連續式鰭片以及2.5mm的交錯式鰭片兩種散熱座樣品,並在實驗中量測兩種型式散熱座的散熱性能,再將實際測試數據與模擬計算結果作對照。結果發現,實作樣品與模擬計算結果有著相同的趨勢,且間距2.5mm的交錯式鰭片的散熱性能確實較鰭片間距0.5mm的連續式鰭片散熱座優異。最後,檢討各製程工法的限制與成本,以找出最佳性價比的量產設計參考。
摘要(英) In order to solve the thermal issues of servers arising from a large amount of network access, the present effort seeks to develop a liquid cooling CPU heat sink for 1U server. First, numerical analysis was used to find out the best fin space, and then the design of cross-cut pin fin was introduced. As a result, a proper number of the segmented sections was found to enhance the disturbance of flow and to avoid the frictions caused by too many segmented sections. In order to get better thermal performance under larger fin space and less segmented sections to save the cost, staggered fin was proposed to realize the aim. The results showed that with the fin space of 2.5mm and 4 segmented sections, the performance of staggered fin is better than the straight fin with the space of only 0.5mm.

To validate the simulation results, a staggered fin base and a straight fin base were fabricated via CNC machining process. Their thermal performances were measured respectively and then compared with numerical results. The experimental results show a coordinate tendency with numerical simulations and confirmed that the staggered one get better performance. Finally, a review on the limitations and cost of different manufacturing processes was conducted to find the best cost-effective mass production design.
關鍵字(中) ★ 液冷式散熱座
★ 數值模擬
★ 鰭片間距
★ 連續式鰭片
★ 交錯式鰭片
關鍵字(英) ★ liquid cooling heat sink
★ numerical analysis
★ fin space
★ straight fin
★ staggered fin
論文目次 第一章 導論 1
1-1 前言 1
1-2 電腦冷卻技術 2
1-2-1 氣冷式散熱技術 2
1-2-2 液冷式散熱技術 3
1-3 液冷式散熱座介紹 4
1-3-1 S型流道 4
1-3-2 柱狀式流道 4
1-3-3 一進側出型流道 4
1-3-4 鰭片式流道 5
1-4 文獻回顧 5
1-4-1 液冷技術方面的文獻回顧 5
1-4-2 鰭片設計的文獻回顧 6
1-5 研究動機 8
1-6 液冷式鰭片設計原則 9
1-6-1 包絡體積 9
1-6-2 底部厚度 10
1-6-3 鰭片間距 10
1-6-4 製作工法限制 11
第二章 數值方法 21
2-1 物理模型的建立 22
2-2 邊界條件 22
2-3 格點 23
2-4 求解方法 24
2-4-1 演算法流程簡介 24
2-5 統御方程式 25
第三章 實驗方法與設備 38
3-1 實驗目的 38
3-2 實驗程序 38
3-3 實驗設備 39
3-3-1 熱電偶擷取系統 39
3-3-2 熱電偶 39
3-3-3 電源供應器 40
3-3-4 模擬晶片 40
3-3-5 散熱座 40
3-3-6 軟管 41
3-3-7 水泵(Pump) 41
3-3-8 熱交換器 41
3-3-9 散熱膏 42
3-3-10 絕熱材料 42
3-3-11 風扇 42
3-3-12 冷卻水槽 42
3-3-13 實驗參數 42
3-4 散熱座製造方式 43
3-4-1 鍛造 43
3-4-2 壓鑄 43
3-4-3 半固熔射出 43
3-4-4 擠形 44
3-4-5 放電加工 44
3-4-6電腦數值控制加工(Computerized Numerical Control) 44
3-5 散熱座效能的定義 45
3-6 誤差分析 46
3-6-1 間距0.5mm連續式鰭片之平均值與標準差分析 47
3-6-2 間距2.5mm交錯式鰭片之平均值與標準差分析 48
第四章 結果與討論 69
4-1 數值模擬結果之鰭片間距效應分析 69
4-1-1 鰭片間距 2.5 mm 69
4-1-2 鰭片間距 1.5 mm 70
4-1-3 鰭片間距 0.5 mm 71
4-2 斷續型鰭片 72
4-2-1 對流熱傳係數 72
4-2-2 鰭片段數分析 73
4-3 交錯式鰭片設計 74
4-4 環溫效應 75
4-5 成本分析 76
4-6 實驗量測 76
第五章 結論 97
參考文獻 99

參考文獻 [1]Knight, R. W., Hall, D. J., Goodling, J. S. and Jaeger, R. C., “Heat Sink Optimization with Application to Micro-channels,” IEEE Trans- actions on Components Hybrids and Manufacturing Technology, Vol. 15, No. 5, pp. 832-842, 1992.
[2]Gopinath, D., Joshi, Y. K. and Azarm, S., “Multi-Objective Place- ment Optimization of Power Electronic Devices on Liquid Cooled Heat Sinks,” Seventeenth IEEE SEMI-THERM Symposium, pp.117 -119, 2001.
[3]Qu, W., Mudawar, I., “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single Phase Micro-Channel Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549 - 2565, 2002.
[4]Karim, O., Schaeffer, C., Mallet, B., Coyaud, M. and Gimet, E., “Power Module Integrated Cooling Design Using CFD Simulation,” pp. 1925 -1930, 2001.
[5]Dickinson, R., Novotny, S., Vogel, M., Dunn, J., “A System Design Approach to Liquid-Cooled Microprocessors,"The Eighth Intersoci- ety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.413-420, 2002.
[6]Ronald, L., Linton and Dereje Agonafer, “Coarse and Detailed CFD Modeling of a Finned Heat Sink”, IEEE Transactionson Components Packaging, and Manufacturing Technology, Vol. 18, No. 13, 1995.
[7]Babus, R. F., Haq, K., Akintunde and Probert, S. D., “Thermal performance of pin fin assembly”, Int. J. Heat and Fluid Flow, 1995.
[8]Andrea de Lieto Vollaro, Stefano Grignaffini, and Franco Guglierm- etti, “Optimum Design of Vertical Rectangular Fin Arrays”, Interna- tional Journal of Thermal Sciences, Vol.38, No.6, 1999.
[9]Bar-Cohen and Rohsenow, W. M. “Thermally optimum spacing of vertical, natural convection cooled, parallel plates”, J. Heat Transfer Vol.106, No.1, pp.116-123, 1984.
[10]Morrison, A. T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection, “ Inter Societv Conference on Thermal Phenomena, pp. 145-148, 1992.
[11]Bar-cohen, A. and Jelinek, M., “Optimum Arrays of Longitudinal, Retangular Fins in Convective Heat Transfer,” Heat Transfer Eng. Vol.6, No.3, pp.68, 1985.
[12]Hans Jonsson and Björn Palm, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions" IEEE Transactions on Components and Packaging Technologies, Vol. 23, No.1, pp.47-54, 2000.
[13]Kamal, K., Sikka, Kenneth, E., Torrance, C. U., Scholler, Salan ova, “Heat Sinks With Fluted and Wavy Plate Fins in Natural and Low Velocity Forced Convection”, IEEE Transactions on Compo- nents and Packaging, Vol. 25, No.2, pp.283-292, 2002.
[14]吳德洋,“散熱座應用於水冷系統之效能評估”,大同大學,機械工程研究所,碩士論文,2003。
[15]Tanda, G., “Natural Convection Heat Transfer From a Staggered Vertical Plate Array, “ ASME Journal of Heat Transfer, Vol. 115., pp.938 -945, 1993.
[16]Lee, S., “How to select a heat sink “, Electronics Cooling, 1995.
[17]Chu, R. C., Hwang, U. P. and Simons, R. E., “Conduction Cooling for an LSI Package: A One-Dimensional Approach”, IBM J. RES.Deve- op. Vol.1, No.1 , 1982.
[18]Bar-Cohen, “Thermal Management of Air and Liquid Cool Mutichip
Modules”, IEEE Transactions on Components Hybrids and Manufa- cturing Technology, Vol.10, No.2 , 1987.
[19]Lee, T. Y. T., Andrews, J.A., Chow, P. and Saums, D., “Compact Liquid Cooling System for Small Moveable Electronic Equipment” , IEEE Transactions on Components Hybrids and Manufacturing Tech., Vol. 15, No.5, 1992.
[20]Vogel, M. R., “Liquid Cooling Performance for a 3D Multichip Mod- ule and Miniature”, Components Packaging and Manufacturing Tec- h. ,Part A, IEEE Transactions on see also Components, Hybrids, and Manufacturing Technology,Vol.18, No.1, pp.68-73, 1995.
[21]Gima, S., Romimura, T., Zhang, X. and Fujii, M., “An Experimental Study on Liquid Cooling of High-Power IC Chips”, Advances in Electronic Packaging , Vol.2, ASME 1999.
[22]Dickinson, R. D., Novotny, S., Vogel, M. and Dunn, J., “A System Approach to Liquid-Cooled Microprocessors”, Thermal and Thermo- mechanical Phenomena in Electronic Systems, pp.413-420, 2002.
[23]Hammoud, J. Y., Zhou and Abazarnia, N., “Effects of the Liquid Inlet Temperature on the Thermoelectric Cooler Performance in a Liquid Thermal System”, Proceedings ICT, 02. Twenty-First International Conference , pp.506-510, 2002.
[24]Zhang, H. Y., Pinjala, D. and Teo, P. S., “Thermal Management of High Power Dissipation Electronic Packages: from Air Cooling to Liquid Cooling”, Electronics Packaging Technology Conference, 2003.
[25]Lee, T. Y., “Design Optimization of an Integrated Liquid-Cooled IGBT Power Module Using CFD Technique”, IEEE Transactions Components and Packaging Technologies, Vol. 23 , No. 1, 2000.
[26]Cengel, Y. A., “Introduction to Thermodynamics and Heat Transfer”, McGraw-Hill, 1997.
[27]Tse, F. S. and Morse, I. E., “Measurement and Instrumentation in Engineering”, Marcel Dekker, Inc, 1989.
[28]Incropera, F. P. and David, P Dewitt, “Fundamentals of Heat and Mass Transfer”, John Wiles & Sons, 2002.
[29]國立清華大學http://ocw.nthu.edu.tw/ocw/upload/2/news/Heatsinks.pdf.
[30]宋志傑,“水冷式散熱座冷卻效益之研究”,大同大學,機械工程研究所,碩士論文,2010。
指導教授 蕭述三(Shu-san Hsiau) 審核日期 2015-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明