博碩士論文 100389003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.227.97.219
姓名 黃茂嘉(Mao-Chia Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 具奈米結構赤鐵礦之製備及其在光電化學行為研究
(On the Preparation of Nanostructured α-Fe2O3 and Evaluation of Their Photoelectrochemical Behaviors)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 1972年Honda與Fujishima率先提出光電化學法產氫,以太陽光照射二氧化鈦催化分解水釋放氫氣為一前瞻性之產氫方法。氫能源為一重要之新能源,將可解決人類面臨的能源危機及地球暖化之問題;本研究嘗試以氧化鐵奈米結構取代二氧化鈦應用於光催化分解水產氫,利用磁控濺鍍設備搭配一簡單、便宜及快速之電化學陽極蝕刻製程於摻氟二氧化錫(F-doped SnO2, FTO)玻璃基板成長氧化鐵奈米結構,除探討蝕刻溫度對其結構、光電化學特性影響外,並嘗試以二次退火熱處理提升氧化鐵奈米結構之光電化學表現及抗蝕性。研究結果顯示:於不同蝕刻溫度下,經20 V蝕刻2分鐘,退火550 ℃後持溫2小時後,以掃描式電子顯微鏡觀察試片表面呈現三種不同形貌,分別為薄膜(20 ℃)、奈米顆粒(40 ℃)及奈米柱(60 ℃);若蝕刻溫度升至80 ℃則產生過蝕刻現象而無法應用於光電化學水分解。經由X光繞射圖譜及拉曼分析結果得知:經550 ℃退火之試片皆為純赤鐵礦,由光電化學反應結果顯示:奈米柱結構因具有適當的膜厚(330 nm)、較佳之光吸收率及較強的(110)峰值而具有較佳之光電流表現(0.59 mA/cm2 bias 0.6 V vs. SCE)。此外,將上述之奈米柱結構試片於大氣環境下分別進行二次退火600至800 ℃持溫20分鐘,由光電化學測試結果可知,經750 ℃二次退火之氧化鐵奈米柱具有最佳光電流密度(1.50 mA/cm2 bias 0.6 V vs. SCE),雖然I(110)/I(104)由1.53降至0.80,但高溫促使FTO基板適量的錫離子之擴散至氧化鐵內部,因而增加載子濃度並降低質傳阻抗,相較於未二次退火之試片(0.59 mA/cm2 bias 0.6 V vs. SCE),經二次退火熱處理750 ℃後,提升試片之光電流表現約2.54倍。
摘要(英) Renewable energy correlated to hydrogen utilization has been considered as one of potential solutions to solve nowadays urgent issues that humankind encountered in energy crisis and global warming. Photoelectrochemical (PEC) water splitting was a promising method to convert the solar energy into hydrogen by Honda and Fujishima in 1972. In this study, nanostructured α-Fe2O3 have been fabricated on fluorine-doped SnO2 (FTO) glass substrate by DC magnetron sputtering process using a simple, cheap and rapdily method of electrochemical anodization and considered to replace TiO2 for PEC water splitting application. Influences of anodized parameters (i.e., anodization temperature and anodization time) and re-annealed treatment on structural, optical, anti-corrosion and PEC characteristics have been investigated. The as-obtained samples after annealing at 550 ℃ for 2 h in air ambient were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra, UV-visible spectra and electrochemical analysis. After annealing, all samples revealed only hematite signals by Raman spectra and XRD pattern. Result from SEM, different etching temperatures show various morphologies, i.e., thin film at 20 ℃, nanoparticles at 40 ℃ and nanorods at 60 ℃. However, high anodizing temperature (80 ℃) would lead a great fraction of FTO surface exposed and therefore compromises the photocatalytic activity of hematite electrodes. In PEC results, the α-Fe2O3 nanorods had a better performance of 0.59 mA/cm2 at 0.6 V vs. SCE compare to other nano-structures due to a suitable thickness (330 nm), higher absoprtion in visible wavelength and a higher intensity of (110) peak in XRD pattern. On the other hand, the α-Fe2O3 nanorods diameter increased ranging from 300 to 1500 nm with increasing re-annealed temperature ranging from 600 to 800 ℃ for 20 min, respectively. Based upon our observations, the α-Fe2O3 nanorods re-annealed at 750 ℃ for 20 min indicated a better PEC response with photocurrent density of about 1.50 mA/cm2 at 0.6 V vs. SCE. This value was about 2.54 times higher than the simply annealed at 550 ℃ for 1 h. Observed higher photocurrent density was attributed to Sn-doped on the surface of hematite through its diffusion from the FTO substrate in the re-annealing duration althougth the I(110)/I(104) of samples decreased from 1.53 to 0.80 with re-annealed temperature up to 750 ℃.
關鍵字(中) ★ 赤鐵礦
★ 奈米結構
★ 二次退火
★ 陽極蝕刻
★ 光分解水
★ 光電化學
關鍵字(英) ★ α-Fe2O3
★ nanostructure
★ re-annealed treatment
★ anodization
★ water splitting
★ photoelectrochemistry
論文目次 摘要 i
Abstract iii
誌謝 v
圖目錄 x
表目錄 xvi
符號說明 xvii
第一章、緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 4
1-4 論文架構 5
第二章、原理與文獻回顧 9
2-1 光觸媒分解水原理 9
2-1-1 光觸媒概說 9
2-1-2 分解水原理 11
2-1-3 影響光催化之因素 13
2-2 光觸媒文獻回顧 14
2-2-1 本研究團隊近年之光觸媒研究 14
2-2-2 氧化鐵光觸媒文獻回顧 18
2-3 實驗原理 22
2-3-1 濺鍍製程 22
2-3-2 電化學製程 24
第三章 實驗方法與步驟 41
3-1 實驗藥品 41
3-2 實驗儀器設備 41
3-2-1 實驗設備 41
3-2-2 分析儀器 42
3-3 實驗流程 43
3-3-1 基材前處理 44
3-3-2 濺鍍純鐵薄膜 44
3-3-3 電化學陽極蝕刻氧化鐵奈米結構 45
3-3-4 退火處理 46
3-3-5 材料分析 46
3-3-6 電化學分析 47
第四章 實驗結果與討論 55
4-1 陽極蝕刻參數對氧化鐵奈米結構之特性影響 55
4-1-1 電化學陽極蝕刻機制探討 55
4-1-2 蝕刻溫度對其結構性質之影響 58
4-1-3 蝕刻溫度之光電特性探討 60
4-1-4 不同蝕刻液溫度之光電化學性質探討 61
4-2 二次退火熱處理對氧化鐵奈米柱之特性影響 72
4-2-1 二次退火效應對其微結構、化學組成及光學特性探討 72
4-2-2 二次退火效應對其電化學性質探討 75
第五章 結論 99
第六章 未來展望 101
參考文獻 103
作者個人資料 109
參考文獻 [1] 吳錦貞,I-III-VI/II-VI 族可見光應答光觸媒材料之光電化學分析與水分解產氫應用,國立中正大學博士論文,民國97年。
[2] M. A. K. Lodhi, Int. J. Hydrogen Energy 29 (2004) 1099.
[3] 藍瑋宣,以水熱法製備水系鈉離子電池NaTi2(PO4)3負極材料,國立中央大學碩士論文,民國103年。
[4] 張智詠,以陽極處理製備奈米結構之氧化鐵光觸媒薄膜,國立中央大學碩士論文,民國98年。
[5] 劉怡君,碳摻雜α-Fe2O3薄膜合成及水分解應用,國立台北科技大學碩士論文,民國99年。
[6] A. Fujishima, K. Honda, Nature 238 (1972) 37.
[7] X. Lu, S. Xie, H. Yang, Y. Tong, H. Ji, Chem. Soc. Rev. 43 (2014) 7581.
[8] J. Li, N. Wu, Catal. Sci. Technol. 5 (2015) 1360.
[9] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 11 (2010) 6446.
[10] H.M. Chen, C.K. Chen, R.-S. Liu, L. Zhang, J. Zhang, D.P. Wilkinson, Chem. Soc. Rev. 41 (2012) 5654.
[11] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253.
[12] C. W. Lai, S. Sreekantan, J. Alloy Compd. 547 (2013) 43.
[13] P. Wei, J. Liu, Z. Li, Ceram. Int. 39 (2013) 5387.
[14] H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, H. W. Huang, T. S. Chan, R. S. Liu, D. P. Tsai, Small 9 (2013) 2926.
[15] C.-H. Hsu, C.-H. Chen, D.-H. Chen, J. Alloy Compd. 554 (2013) 45.
[16] J. Cai, S. Li, Z. Li, J. Wang, Y. Ren, G. Qin, J. Alloy Compd. 574 (2013) 421.
[17] T. H. Wang, M.-C. Huang, Y.-K. Hsieh, W.-S. Chang, J.-C. Lin, C.-H. Lee, C.-F. Wang, ACS Appl. Mater. Interfaces 5 (2013) 7937.
[18] T. Wang, M.-C. Huang, F.-W. Liu, Y.-K. Hsieh, W.-S. Chang, J.-C. Lin, C.-F. Wang, RSC Adv. 4 (2014) 4463.
[19] M.-C. Huang, T.-H. Wang, S.-H. Cheng, J.-C. Lin, W.-H. Lan, C.-C. Wu, W.-S. Chang, Nanosci. Nanotechnol. Lett. 6 (2014) 210.
[20] M.-C. Huang, T. Wang, C.-C. Wu, W.-S. Chang, J.-C. Lin, W.-H. Lan, T.-H. Yen, Nanosci. Nanotechnol. Lett. 6 (2014) 464.
[21] M.-C. Huang, T. Wang, W.-S. Chang, J.-C. Lin, C.-C. Wu, I.-C. Chen, K.-C. Peng, S.-W. Lee, Appl. Surf. Sci. 301 (2014) 369.
[22] M.-C. Huang, T. Wang, C.-C. Wu, W.-S. Chang, J.-C. Lin, T.-H. Yen, Ceram. Int. 40 (2014) 10537.
[23] M.-I. Lee, M.-C. Huang, D. Legrand, G. Lerondel, J.-C. Lin, Thin Solid Films, 570 (2014) 516.
[24] M.-C. Huang, T. Wang, W.-S. Chang, C.-C. Wu, J.-C. Lin, T.-H. Yen, J. Alloy Compd. 606 (2014) 189.
[25] M.-C. Huang, T. Wang, Y.-T. Tseng, C.-C. Wu, J.-C. Lin, W.-Y. Hsu, W.-S. Chang, I.-C. Chen, K.-C. Peng, J. Alloy Compd. 622 (2015) 669.
[26] M.-C. Huang, W.-S. Chang, J.-C. Lin, Y.-H. Chang, C.-C. Wu, J. Alloy Compd. 636 (2015) 176.
[27] M.-C. Huang, T. Wang, Y.-T. Tseng, C. Chien, F.-W. Liu, J.-C. Lin, Nanosci. Nanotechnol. Lett. 7 (2015) 297.
[28] M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, C.-C. Wu, Appl. Surf. Sci. 360 (2016) 442.
[29] M.-C. Huang, T. Wang, W.-S. Chang, C.-C. Wu, J.-C. Lin, C.-H. Lee, S.-H. Huang, Vacuum, 129 (2016) 111.
[30] H. Deng, M.-C. Huang, W.-H. Weng, J.-C. Lin, “Iron oxide nanotube film formed on carbon steel for photoelectrochemical water splitting: effect of annealing temperature”, Surf. Interface Anal., 2016, article in press. doi: 10.1002/sia.6032.
[31] L. Tian, H.I. Elim, W. Ji, J.J. Vittal, Chem. Commun. 41 (2006) 4276.
[32] K. Arifin, W. R. W. Daud, M. B. Kassim, Ceram. Int. 39 (2013) 2699.
[33] J. A. Glasscock, Nanostructured materials for photoelectrochemical hydrogen production using sunlight, School of Chemical Sciences and Engineering, University of New South Wales, PhD degree thesis, 2008.
[34] A. Kay, I. Cesar, M. Gratzel, J. Am. Chem. Soc., 128 (2006) 15714.
[35] T. Takeguchi , T. Yamanaka , H. Takahashi , H.Watanabe, T. Kuroki, H. Nakanishi , Y. Orikasa , Y. Uchimoto , H. Takano , N. Ohguri ,M. Matsuda, T. Murota , K. Uosaki ,W. Ueda, J. Am. Chem. Soc. 30 (2014) 135.
[36] A. B. Murphy, L. K. Randeniya, I. C. Plumb, I. E. Grey, Horne, Int. J. Hydrogen Energy 31 (2006) 1999.
[37] M. Gratzel, Acc. Chem. Res. 14 (1981) 376-384.
[38] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.
[39] 黃茂嘉,奈米氧化鋅結構之電化學研製及其在發光二極體之應用,國立中央大學碩士論文,民國100年。
[40] 鄭碩漢,溶膠凝膠法製備(2.0 at.%)鎵與(0.0~1.0 at.%)鈦共摻之氧化鋅薄膜並研究其光電特性,國立中央大學碩士論文,民國102年。
[41] 吳斌瑞,以電化學方法在鋅箔上製備氧化鋅奈米結構,國立中央大學碩士論文,民國100年。
[42] 簡戩,以溶凝膠法製作摻錫氧化鐵薄膜並研究其在光電分解水之應用,國立中央大學碩士論文,民國103年。
[43] 劉富維,RP-LaSr3Fe3-xMxO10 (MX = Co0~1.5或Mn0~0.5)之合成及其在氧催化特性之差異,,國立中央大學碩士論文,民國103年。
[44] H. Deng, M.-C. Huang, W.-H. Weng, J.-C. Lin, Surf. Coat. Technol. 266 (2015) 183.
[45] T. J. LaTempa, X. Feng, M. Paulose, C. A. Grimes, J. Phys. Chem. C 113 (2009) 16293.
[46] S. K. Mohapatra, S. E. John, S. Banerjee, M. Misra, Chem. Mater. 21 (2009) 3048.
[47] K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J.Tucek, J. Frydrych, M. Gratzel, J. Am. Chem. Soc. 132 (2010) 7436.
[48] S. D. Tilley, M. Cornuz, K. Sivula, M. Gratzel, Angew. Chem. 122 (2010) 6549.
[49] Y. Lin, S. Zhou, S. W. Sheehan, D. Wang, J. Am. Chem. Soc. 133 (2011) 2398.
[50] Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119.
[51] A. Mao, N.-G. Park, G. Y. Han, J. H. Park, Nanotechnology 22 (2011) 175703.
[52] L. Wang, C.-Y. Lee, P. Schmuki, Electrochim. Acta 91 (2013) 307.
[53] S. Kment, P. Schmuki, Z. Hubicka, L. Machala, R. Kirchgeorg, N. Liu, L. Wang, K. Lee, J. Olejnicek, M. Cada, I. Gregora and R. Zboril, ACS Nano, 2015, 9, 7113.
[54] B. Mauvernay, L. Presmanes, C. Bonningue, P. Tailhades, J. Magn. Magn. Mater. 320 (2008) 58.
[55] 彭坤增,鈧共摻雜含量(0~2.37 wt%)對摻鋁氧化鋅透明導電薄膜之結構與特性影響研究,國立中央大學博士論文,民國98年。
[56] 曾群安,鋁摻雜與鐵鋁共摻雜氧化鋅薄膜之製備與結構、物性及表面特性研究,國立中央大學博士論文,民國101年。
[57] C.-Y. Chang, C.-H. Wang, C.-J. Tseng, K.-W. Cheng, L.-W Hourng, B.-T. Tsai, Int. J. Hydrogen Energy 37 (2012) 13616.
[58] J. Wang and Z. Lin, J. Phys. Chem. C, 2009, 113, 4026.
[59] R. R. Rangaraju, A. Panday, K. S. Raja and M. Misra, J. Phys. D: Appl. Phys., 2009, 42, 135303.
[60] K. Ben-Kamel, N. Amdouni, A. Mauger, C.M. Julien, J. Alloys Comp. 528 (2012) 91.
[61] H. Zhu, J. Deng, J. Chen, R. Yu, X. Xing, J. Mater. Chem. A 2 (2014) 3008.
[62] F. Froment, A. Tournié, P. Colomban, J. Raman Spectrosc. 39 (2008) 560.
[63] D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, J. Raman Spectrosc. 28 (1997) 873.
[64] V. A.N. d. Carvalho, R. A. d. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, F. L. Souza, J. Power Sources 205 (2012) 525.
[65] J. Deng, X. Lv, J. Gao, A. Pu, M. Li, X. Sun, J. Zhong, Energy Environ. Sci. 6 (2013) 1965.
[66] G. Wang, Y. Ling, D.A. Wheeler, K.E.N. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, Nano Lett. 11 (2011) 3503.
[67] M. Rioult, H. Magnan, D. Stanescu, A. Barbier, J. Phys. Chem. C 118 (2014) 3007.
[68] M. Mohapatra, S. Layek, S. Anand, H. C. Verma, B. K. Mishra, Phys. Status Solidi B 250 (2013) 65.
[69] J.-P. Wang, D.-W. Lee, J.-Y. Yun, S.-M. Shin, I.-S. Kim, Journal of Korean Powder Metallurgy Institute 20 (2013) 174.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2016-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明