博碩士論文 100481024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.238.190.82
姓名 何東興(Dong-sing He)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 從會計結轉觀點評估集團企業動態績效: 以台灣半導體產業為例
(Evaluating the Dynamic Performances of Business Groups from the Carry-Over Perspective: A Case Study of Taiwan’s Semiconductor Industry)
相關論文
★ 二氧化鈦技術生命週期之研究★ 整體後勤業參與同步工程於產品開發績效關係之研究—以中科院為例
★ 筆記型電腦之IFA/PIFA天線技術生命週期分析★ 國籍航空公司經營績效分析-以資料包絡分析方法分析
★ 從專利分析看3D IC技術與市場發展★ 影響企業導入電子發票系統成效之因素探討
★ 影響企業導入數位學習成功因素之探討-以個案公司為例★ 產品生命週期管理系統導入成功要素之探討--以S科技公司為例--
★ 組織創新能力影響因素研究★ 製 造 業 閒 置 資 產 轉 售 平 台 製造業閒置資產轉售平台-以廣達電腦股份有限公司為例
★ 供應商先行者優勢探討-以宸鴻科技為例★ 團隊領導者創新特質與開放式創新專案關係之研究
★ 從商業生態系統談樞紐者策略-以Apple 與Nokia 為例★ 個人電腦的競爭與發展策略-以台灣電子產業為例
★ 應用兩階段資料包絡分析法評估高級職業學校之經營績效★ ERP導入的促進因素:使用者觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究運用動態資料包絡分析法,以會計跨期結轉觀點探討台灣半導體產業於集團體系下之動態營運績效,除此之外,更進一步探討各種型態的集團轉投資半導體公司與營運績效間是否具有顯著相關,研究結果發現1.集團體系的半導體公司,其營運績效優於非集團體系的半導體公司。主要原因為隸屬於集團可擁有人才、資金、技術、經營管理能力...等豐富的資源優勢。2.集團體系的半導體公司於2006-2012年7年期間整體平均效率值,以IC設計公司表現最佳,其次為晶圓製造公司。主要原因為近年來IC設計在聯發科等重量級大廠帶領下,獲利屢創新高,而晶圓製造則有台積電與聯電兩大晶圓代工龍頭,維持良好獲利所致。3.集團企業轉投資半導體產業公司家數較多者,也就是廣度大的公司其效率值高於廣度中的公司,而廣度中的公司其效率值又大於廣度小的公司。原因為集團企業以核心技術與專長為基礎,能發揮集團組織整合運作的綜效。4.集團體系的半導體公司有無投資大陸產業與營運績效表現無顯著相關。主因為政府為使半導體產業根留台灣,對半導體產業投資大陸的累積金額訂有投資上限規定,限制了半導體產業的投資行為與擴展,因而有此結果。
摘要(英) This study evaluates the dynamic operating performances of Taiwan’s semiconductor industry from 2006 to 2012, using the dynamic data envelopment analysis (DEA), a technique based on the perspective of inter-period carry-over in accounting. The industry’s various characteristics are investigated to determine their relationships to the semiconductor industry’s efficiency. The following empirical results are found: companies within a business group are more efficient on average than those under a non-business group; integrated circuit (IC) design companies are more efficient than others; companies with high level scopes generally operate better than those with low level scopes; firms with an investment in China are not more competitive. The potential applications and strengths of using DEA to assess the semiconductor industry are also highlighted.
關鍵字(中) ★ 集團企業
★ 半導體產業
★ 績效評估
★ 動態資料包絡分析
關鍵字(英) ★ Business group
★ Semiconductor industry
★ Performance evaluation
★ Dynamic DEA
論文目次 摘  要...............................................i
ABSTRACT..............................................ii
ACKNOWLEDGMENTS.......................................iii
TABLE OF CONTENTS.....................................iv
LIST OF FIGURES.......................................vi
LIST OF TABLES........................................vii
1. Introduction.......................................1
2. Literature Review..................................5
2.1 Business Groups...................................5
2.2 Semiconductor Companies in Taiwan.................6
2.3 Literature Evaluation of Semiconductor Companies’ Performance...........................................8
3. Research Design....................................15
3.1 Performance Model.................................15
3.2 Samples and Data..................................20
3.3 Research Methodology..............................24
3.3.1 Traditional Data Envelopment Analysis (DEA) Models ......................................................24
3.3.2 Dynamic DEA.....................................29
4. Empirical Results..................................35
4.1 Dynamic Performance Analysis for “Group” and “Non-Group” Companies......................................35
4.2 Characteristics and Performance of Semiconductor Companies Within a Business Group.....................38
4.2.1 Industry Category...............................38
4.2.2 The Scope of Investment.........................41
4.2.3 Semiconductor Investment in China...............43
5. Conclusions........................................46
6. Managerial Implications............................49
7. Limitations and Suggestions........................52
References............................................53
參考文獻 [1]Avkiran, N. K. (2011). Association of DEA super-efficiency estimates with financial ratios: Investigating the case for Chinese banks. Omega, International Journal of Management Science, 39(3), 323-334.
[2]Banker, R. D., Chames, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078- 1092.
[3]Bowlin, W. (1995) A characterization of the financial condition of the United States’ aerospace-defense industrial base. Omega, International Journal of Management Science, 23(5), 539-555.
[4]Brockett, P. L., & Golany, B. (1996). Using rank statistic for determining programmatic efficiency differences in data envelopment analysis. Management Science, 42(3), 467-472.
[5]Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
[6]Chang, S. J., & Hong, J. (2000). Economic performance of group-affiliated companies in Korea: Intragroup resource sharing and internal business transactions. Academy of Management Journal, 43(3), 429-448.
[7]Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Kluwer Academic Publishers, Boston.
[8]Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Handbook on data envelopment analysis. Kluwer Academic Publishers, Boston.
[9]Chen, X., Skully, M., & Brown, K. (2005). Banking efficiency in China: Application of DEA to pre-and post-deregulation eras: 1993-2000. China Economic Review, 16(3), 229-245.
[10]Chen, T. Y., & Chen, L. H. (2007). DEA performance evaluation based on BSC indicators incorporated: The case of semiconductor industry. International Journal of Productivity & Performance Management, 56(4), 335-357.
[11]Chung, S. H., Lee, A. H., Kang, H. Y., & Lai, C. W. (2008). A DEA window analysis on the product family mix selection for a semiconductor fabricator. Expert Systems with Applications, 35(1/2), 379-388.
[12]Chang, S. Y., & Chen, T. H. (2008). Performance ranking of Asian lead frame firms: a slack-based method in data envelopment analysis. International Journal of Production Research, 46(14), 3875-3885.
[13]Chen, Y. S., & Chen, B. Y. (2011). Applying DEA, MPI, and grey model to explore the operation performance of the Taiwanese wafer fabrication industry. Technological Forecasting and Social Change, 78(3), 536-546.
[14]Chou, Y. C., Shao, B. B. M., & Lin, W. T. (2012). Performance evaluation of production of IT capital goods across OECD countries: A stochastic frontier approach to Malmquist index. Decision Support Systems, 54(1), 173-184.
[15]Chang, C. C., Hung, S. W., & Huang, S. Y. (2013). Evaluating the operational performance of knowledge-based industries: The perspective of intellectual capital. Quality & Quantity, 47(43), 1367-1383.
[16]Dinar, A., Karagiannis, G., & Tzouvelekas, V. (2007). Evaluating the impact of agricultural extension on farms′ performance in Crete: a nonneutral stochastic frontier approach. Agricultural Economics, 36(2), 135-146.
[17]Department of Investment Services, Ministry of Economic Affairs, Taiwan. (2009). Taiwan semiconductor industry analysis & investment opportunities. Taipei: Ministry of Economic Affairs.
[18]Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 102(3), 253-290.
[19]Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84(1), 66-83.
[20]Färe. R., & Grosskopf, S. (1996). Intertemporal production frontiers: With dynamic DEA. Boston: Kluwer Academic Publishers.
[21]Feroz, E. H., Kim, S., & Raab, R. L. (2003). Financial statement analysis: A data envelopment analysis approach. Journal of the Operational Research Society, 54(1), 48-58.
[22]Fisman, R., & Khanna, T. (2004). Facilitating development: The role of business groups. World Development, 32(4), 609-628.
[23]Golany, B., & Roll, Y. (1989). An application procedure for data envelopment analysis. Omega, International Journal of Management Science, 17(3), 237-250.
[24]Ghemawat, P., & Tarun, K. (1998). The nature of diversified business group: A research design and two case studies. Journal of industrial Economics, 46(1), 35-61.
[25]Hoshi, T., Kashyap, A., & Scharfstein, D. (1991). Corporate structure, liquidity, and investment: Evidence from Japanese industrial groups. Quarterly Journal of Economics, 106(1), 33-60.
[26]Horngren, C. T., & Harrison, W. T. (2007). Accounting. Maryland USA: Prentice Hall.
[27]Ho, L. H., Feng, S. Y., & Lee, Y. C. (2012). Using modified IPA to evaluate supplier′s performance: Multiple regression analysis and DEMATEL approach. Expert Systems with Applications, 39(8), 7102-7109.
[28]Hsiao, B., Chern, C. C., & Yu, M. M. (2012). Measuring the relative efficiency of IC design firms using the directional distance function and a meta-frontier approach. Decision Support Systems, 53(4), 881-891.
[29]Hsu, C. M. (2014a). An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming. International Journal of Systems Science, 45(12), 2645-2664.
[30]Hsu, C. Y. (2014b). Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations. Journal of Intelligent Manufacturing, 25(5), 945-960.
[31]Klopp, G. A. (1985). The analysis of the efficiency of production system with multiple inputs and outputs. Dissertation (PhD). University of Illinois, Industrial and System Engineering College, Chicago.
[32]Kozmetsky, G. (1998). Comparative performance of global semiconductor companies. Omega, International Journal of Management Science, 26(2), 153-175.
[33]Khanna, T., & Palepu, K. (2000). The future of business groups in emerging markets: Long-run evidence from Chile. Academy of Management Journal, 43(3), 268-285.
[34]Khanna, T., & Rivkin, J. W. (2001). Estimating the performance effects of business groups in emerging markets. Strategic Management Journal, 22(1), 45-74.
[35]Khanna, T., & Yishay, Y. (2007). Business groups in emerging markets: Paragons or parasites? Journal of Economic Literature, 45(2), 331-372.
[36]Kao, C. (2010). Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization. Omega, International Journal of Management Science, 38(6), 484-491.
[37]Leff, N. H. (1978). Industrial organization and entrepreneurship in the developing countries: The economic groups. Economic Development and Cultural Change, 26(4), 661-675.
[38]Liu, F. H. F., & Wang, P. H. (2008). DEA Malmquist productivity measure: Taiwanese semiconductor companies. International Journal of Production Economics, 112(1), 367-379.
[39]Lu, W. M., & Hung, S. W. (2009). Evaluating profitability and marketability of Taiwan’s IC fabless firms: An DEA approach. Journal of Scientific & Industrial Research, 68(10), 851-857.
[40]Lu, W. M., & Hung, S. W. (2010). Assessing the performance of a vertically disintegrated chain by the DEA approach: a case study of Taiwanese semiconductor firms. International Journal of Production Research, 48(4), 1155-1170.
[41]Lu, W. M., & Hung, S. W. (2010). Performance efficiency of offshore business groups in China- How Taiwanese firms perform. Asia Pacific Management Review, 15(3), 391-412.
[42]Lu, W. M., Wang, W. K., & Lee, H. L. (2013). The relationship between corporate social responsibility and corporate performance: evidence from the US semiconductor industry. International Journal of Production Research, 51(19), 5683-5695.
[43]Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica y de Investigacion Operativa, 4(2), 209-242.
[44]Mateo, F. D., Coelli, T., & O’Donnell, C. (2006). Optimal paths and costs of adjustment in dynamic DEA models with application to Chilean department stores. Annals of Operations Research, 145(1), 211-227.
[45]Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 19(2-3), 191-210.
[46]Ouellette, P., & Vierstraete, V. (2004). Technological change and efficiency in the presence of quasi-fixed inputs: A DEA application to the hospital sector. European Journal of Operational Research, 154(3), 755-763.
[47]Strachan, H. (1976). Family and other business groups in economic development: The case of Nicaragua. New York: Praeger.
[48]Shepherd, P. R. (1996). Integrated circuit: Design, fabrication and test. New York: McGraw Hill.
[49]Sharma, K. R., Pradhan, N. C., & Leung, P. S. (2001). Stochastic frontier approach to measuring irrigation performance: An application to rice production under the two systems in the Tarai of Nepal. Water Resources Research, 37(7), 2009-2018.
[50]Sueyoshi, T., & Aoki, S. (2001). A use of a nonparametric statistic for DEA frontier shift: The Kruskal and Wallis rank test. Omega, International Journal of Management Science, 29(1), 1-18.
[51]Sueyoshi, T., & Sekitani, K. (2005). Returns to scale in dynamic DEA. European Journal of Operational Research, 161(2), 536-544.
[52]Schneider, B. R. (2009). A comparative political economy of diversified business groups, or how states organize big business. Review of International Political Economy, 16(2), 178-201.
[53]Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509.
[54]Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, International Journal of Management Science, 38(3-4), 145-156.
[55]Van der Meer, R. B., Quigley, J., & Storbeck, J. E. (2005). Using regression analysis to model the performance of UK Coastguard centres. Journal of the Operational Research Society, 56(6), 630-641.
[56]Vaninsky, A. (2010). Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment - stochastic frontier analysis approach. Energy, 35(9), 3657-3665.
[57]Wang, E. C. (2007). R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach. Journal of policy Modeling, 29(2), 345-360.
[58]Wu, W. Y., Tsai, H. J., Cheng, K. Y., & Lai, M. (2006). Assessment of intellectual capital management in Taiwanese IC design companies: Using DEA and the Malmquist productivity index. R&D Management, 36(5), 531-545.
[59]Weygandt, J. J., Kimmel, P. D., & Keiso, D. E. (2010). Financial accounting. Marysville, WA: Wiley.
[60]Wen, H. C., Huang, J. H., & Cheng, Y. L. (2012). What Japanese semiconductor enterprises can learn from the asset-light business model for sustainable competitive advantage. Asian Business & Management, 1(5), 615-649.
[61]Yang, C., & Hung, S. W. (2003). Taiwan’s dilemma across the strait: Lifting the ban on semiconductor investment in China. Asian Survey, 43(4), 681-696.
[62]Yiu, D., Bruton, G. D., & Lu, Y. (2005). Understanding business group performance in an emerging economy: Acquiring resources and capabilities in order to prosper. Journal of Management Studies, 42(1), 183-206.
指導教授 洪秀婉(Shiu-wan Hung) 審核日期 2015-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明