博碩士論文 100521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:100.24.122.117
姓名 陳德銘(De-ming Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以軟硬體協同設計之 HE-AAC 音訊解碼器
(A Hardware/Software Co-Design of High Efficiency AAC Audio Decoder)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
★ 一個低功率的MPEG Layer III 解碼器架構設計★ 具有高品質反量化演算的AAC解碼器 之平台式設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文主要是在呈獻出以軟硬體協同設計的方式時實現high efficiency advanced-audio-coding (HE-AAC) 的音訊解碼器, 基於我們複雜度的分析我們可以把這個音訊系統切個成兩個部分. 我們的軟體實現的部分為bitstream parser 和 低運算複雜度的部分, 其他高運算複雜度的地方以硬體實現,我們設計硬體的部分是以VLSI 的IP 方式呈現,在我們決定要以硬體方式實作出來的四個模組。其中IMDCT, analysis quadrature mirror filterbank (AQMF), synthesis quadrature mirror filterbank (SQMF). 這三個模組是以拆解成radix-2 FFT的方式去實現。在我們的設計之中,我們的IP有包上BUS的Wrapper和一些系統層級的實現方式. 我們以TSMC090 的製程去實現我們的設計. 我們的設計約為150K的gate count. 另外我們的IP以1.75MHz極低的運行時脈實現. 所以我們的功率消耗可以低至 7.69mw. 之後我們更進一部的將我們的IP 移植到ARM base 的開發板上可以達到即時的音樂播放. 當在ARM 系統的平台上,使用我們的IP 時可以保留ARM processor 約91.26% 的運算負載。
摘要(英) This paper presents an implementation of hardware/software co-design for high efficiency advanced-audio-coding (HE-AAC) audio decoder. Based on our computation analysis, the decoder system is partitioned into software part and hardware part respectively. We allocate the lower complexity part and bitstream parser with the software solution, and the higher complexity part with the hardware solution. We design the hardware part as an intellectual property (IP) in VLSI design domain. As in this dedicated hardware, four units are developed to cope with the IMDCT, analysis quadrature mirror filterbank (AQMF), synthesis quadrature mirror filterbank (SQMF). For these versatile transformation functi ons, the common radix-2 FFT is decomposed to manipulate it. In an overall system, IP-based implementation is constructed including the wrapper design and some system-level implementation. This design is using TSMC 90 nm library with about 150K gates. Alternatively it can execute at a very low operation frequency with 1.75 MHz. Besides, the power consumption is only 7.69 mW. We further port our design on an ARM Integrator platform to make a real playable system. Over 91.26% ARM performance loading can be saved and substituted by this HE-AAC intelligent property (IP).
關鍵字(中) ★ 音訊解碼
★ 積體電路設計
★ AAC 解碼器
關鍵字(英) ★ AAC
★ VLSI
★ audio
論文目次 摘要 i
Abstract i
Table of Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Analysis and Design Strategy…………………………………………4
2.1 Analysis 4
2.2 Design Strategy 7
2.2.1. Fast Algorithms 8
2.2.2. Formula Simplification 14
2.2.3. Improve Memory Access Order 15
2.2.4. Low Power Consumption Design 16
Chapter 3 Hardware struction we purposed 18
3.1 Stage1 19
3.2 Stage2 20
3.3 Stage3 22
3.4 Stage4 26
Chapter 4 Architecture of proposed design 28
4.1 Communction Between our ASIC and Processor 29
4.2 Pipeline Timing Char 31
Chapter 5 Experimental Result 32
5.1 Cell base 32
5.1.1. Resources use by Cell Base 32
5.1.2. Power Consumption Optimization 34
5.1.3. Power Consumption Comparison (ASIC with ARM processor) 36
5.2 SOPC platform 38
5.2.1. Platform Equipment 38
5.2.2. SOPC Structure of Proposed Design 39
Chapter 6 Conclusion 41
References 43
參考文獻 [1] Stefan Meltzer and Gerald Moser, ”MPEG-4 HE-AAC v2 – audio coding for today′s digital media world”. EBU technical review (01/2006), January. 2006.
[2] Junqiao Huang; Gaoming Du; Duoli Zhang; Yukun Song; Luofeng Geng; Minglun Gao, ”VLSI design of resource shared complex-QMF bank for HE-AAC decoder,” ASIC, 2009. ASICON ′09. IEEE 8th International Conference on , vol., no., pp.796,799, 20-23 Oct. 2009
[3] Shih-Way Huang; Tsung-Han Tsai; Liang-Gee Chen, ”Fast decomposition of filterbanks for the state-of-the-art audio coding,” Signal Processing Letters, IEEE , vol.12, no.10, pp.693,696, Oct. 2005.
[4] Chivukula, R.K.; Reznik, Y.A; Devarajan, V.; Jayendra-Lakshman, M., ”Fast Algorithms for Low-Delay SBR Filterbanks in MPEG-4 AAC-ELD,” Audio, Speech, and Language Processing, IEEE Transactions on , vol.20, no.3, pp.1022,1031, March 2012
[5] Chivukula, R.K.; Reznik, Y.A.; Devarajan, V.; Jayendra-Lakshman, M., ”Fast Algorithms for Low-Delay SBR Filterbanks in MPEG-4 AAC-ELD,” Audio, Speech, and Language Processing, IEEE Transactions on , vol.20, no.3, pp.1022,1031, March 2012
[6] An-Kai Li; Sheau-Fang Lei; Wen-Kai Tsai; Shin-Chi Lai, ”Fast algorithm and common structure design of recursive analysis and synthesis quadrature mirror filterbanks for digital radio mondiale,” Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.1199,1202, 1-5 June 2014
[7] Ming Yan; Guorong Hu; Wang Jia, ”Design and Implementation of MPEG-4 AAC Decoder on ARM Embedded System for CMMB Receiver,” Management and Service Science, 2009. MASS ′09. International Conference on , vol., no., pp.1,3, 20-22 Sept. 2009
[8] Shimada, O.; Nomura, T.; Sugiyama, A; Serizawa, M., ”DSP implementation of the 3GPP enhanced aacPlus decoder,” Consumer Electronics, 2006. ICCE ′06. 2006 Digest of Technical Papers. International Conference on , vol., no., pp.277,278, 7-11 Jan. 2006
[9] FAAD website, http://www.audiocoding.com/
[10] T. TSAI and C. LIU, ”A Configurable Common Filterbank Processor for Multi-Standard Audio Decoder”, IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No. 9, pp. 1913-1923, Sep. 2007.
[11] ISO/IEC, ”Coding of audio-visual objects - Part3: Audio, ISO/IEC Int. Std.14496-3:2005
[12] Y. Jhung and S. Park, “Architecture of dual mode audio filter for AC-3 and MPEG,” IEEE Trans. Consum. Electron., vol.43, no.3, pp.575–585, Aug. 1997.
[13] S.-W. Lee, “Improved algorithm for efficient computation of the forward and backward MDCT in MPEG audio coder,” IEEE Trans. Circuits Syst. II, Express Briefs, vol.48, no.10, pp.990–994, Oct. 2001
[14] Fast IMDCT and MDCT algorithms - a matrix approach,” Signal Processing, IEEE Transactions on , vol.51, no.1, pp.221,229, Jan. 2003
doi: 10.1109/TSP.2002.806566
[15] Hui Li; Ping Li; Yiwen Wang; Qi Tang; Lijian Gao, ”A New Decomposition Algorithm of DCT-IV/DST-IV for Realizing Fast IMDCT Computation,” Signal Processing Letters, IEEE , vol.16, no.9, pp.735,738, Sept. 2009
[16] Lai, S.-C.; Lei, S.-F.; Ching-Hsing Luo, ”Common Architecture Design of Novel Recursive MDCT and IMDCT Algorithms for Application to AAC, AAC in DRM, and MP3 Codecs,” Circuits and Systems II: Express Briefs, IEEE Transactions on , vol.56, no.10, pp.793,797, Oct. 2009
[17] Lei, S.-F.; Lai, S.-C.; Po-Yin Cheng; Ching-Hsing Luo, ”Low Complexity and Fast Computation for Recursive MDCT and IMDCT Algorithms,” Circuits and Systems II: Express Briefs, IEEE Transactions on , vol.57, no.7, pp.571,575, July 2010
[18] DERIVATION OF FAST DCT-4 ALGORITHM BASED ON DFT website, http://www.appletonaudio.com/blog/2013/derivation-of-fast-dct-4-algorithm-based-on-dft/
[19] O′Leary, J., Leeser, M., Hickey, J., & Aagaard, M.,”Non-restoring integer square root: A case study in design by principled optimization,”In: Theorem Provers in Circuit Design. Springer Berlin Heidelberg, 1995. p. 52-71.
[20] ARM website, http://www.arm.com/
[21] ALTERA website, http://www.altera.com/
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2014-12-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明