博碩士論文 100521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.144.108.113
姓名 李柏逸(Po-Yi Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具數位頻帶選擇器和可適性相位頻率偵測器之快速鎖定鎖相迴路
(A Fast-locking Phase-locked Loop with a Digital Band Selector and an Adaptive Phase Frequency Detector)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實現了一個快速鎖定的鎖相迴路,在不使用電感的狀況下,使用四級雙端延
遲元件組成之震盪器能提供八個相位震盪頻率為5 GHz的輸出訊號。整體電路架構採用了多頻帶的電壓控制震盪器來降低KVCO,並利用頻帶選擇器決定出合適的頻帶。為了加速頻帶上的追鎖過程則使用了可適性相位頻率偵測器,使控制電壓能較為迅捷地改變,藉此快速消弭相位差,達到快速鎖定的效果。
本論文實現之具數位頻帶選擇器和可適性相位頻率偵測器之快速鎖定鎖相迴路使
用TSMC 90 nm(TN90GUTM) 1P9M 製程來實現,電路操作電壓為1 V。鎖相迴路的輸入參考時脈為50 MHz,輸出頻率鎖定在5 GHz,鎖定時輸出時脈抖動量為10.3 ps(pk-pk)。鎖定時間為1.6 us,功率消耗為10.1 mW,晶片面積為924.58 924.58 um2,核心電路部分面積則為236.23313.54 um2。
摘要(英) In this thesis, a fast locking PLL is proposed. Its oscillator is composed of 4-stage differential delay cells and can output 8 phase, 5 GHz clock signals without using inductors.The oscillator adopts multi-band architecture to lower the gain of the voltage controlled oscillator, KVCO, and the band selector picks out the adequate band to lock in. The adaptive phase frequency detector speed up the intra-band tracking so that the control voltage(VC)could vary agilely and the phase difference could be eliminated rapidly.
This study was implemented by TSMC 90 nm(TN90GUTM) 1P9M process with 1 V supply voltage. A 50 MHz clock is used to be input reference clock of PLL, and the output frequency is 5 GHz. The period jitter of output frequency is 10.3 ps(pk-pk). The locking time of the proposed PLL is 1.6 us at 5 GHz and the power consumption of the PLL is 10.1 mW.
The chip area is 924.58 924.58 um2 and the core area is 236.23 x 313.54 um2.
關鍵字(中) ★ 快速鎖定鎖相迴路
★ 電流匹配
★ 雙路徑技巧
★ 頻帶上加速機制
★ 頻帶選擇器
★ 可適性相位頻率偵測器
關鍵字(英) ★ Fast locking PLL
★ Current match
★ Dual path
★ Intra-band speedup
★ Band selector
★ Adaptive PFD
論文目次 目錄
摘要 ....................................................................................................................... i
Abstract ................................................................................................................. ii
誌謝 ..................................................................................................................... iii
目錄 ..................................................................................................................... iv
圖目錄 ................................................................................................................ vii
表目錄 ................................................................................................................. xi
第1 章 緒論 ......................................................................................................... 1
1.1 研究動機 ................................................................................................. 1
1.2 論文架構 ................................................................................................. 2
第2 章 快速鎖定鎖相迴路背景簡介 ..................................................................... 3
2.1 鎖相迴路簡介 .......................................................................................... 3
2.1.1 鎖定(Lock) .................................................................................... 4
2.1.2 規格考量 ....................................................................................... 4
2.2 快速鎖定鎖相迴路的不同做法 ................................................................. 5
2.2.1 使用非線性/分段線性相位頻率偵測器之快速鎖定鎖相迴路[1][2] .. 5
2.2.2 使用邊緣遺失補償器之寬鎖定範圍快速鎖定鎖相迴路[3] ............... 6
2.2.3 使用動態相位補償技術之快速鎖定鎖相迴路[4] ............................. 7
2.2.4 一個具有迅捷的電壓控制震盪器校正技術的鎖相迴路[5] ............... 9
2.2.5 具有快速精準的自我頻率校正機制之時脈產生器[6] .................... 10
2.2.6 輸出頻率為2.5GHz 具快速鎖定之自我校正鎖相迴路[9] .............. 11
第3 章 快速鎖定鎖相迴路設計 ........................................................................... 13
3.1 設計概念 ............................................................................................... 13
3.1.1 選擇頻帶部分 .............................................................................. 13
3.1.2 追鎖過程 ..................................................................................... 15
3.2 預計規格 ............................................................................................... 16
第4 章 快速鎖定鎖相迴路電路介紹 ................................................................... 19
4.1 電路架構 ............................................................................................... 19
4.2 穩定度分析 ........................................................................................... 21
4.3 行為模型(Behavior model) ...................................................................... 24
4.4 快速鎖定鎖相迴路子電路介紹 ............................................................... 25
4.4.1 頻帶選擇器 ................................................................................. 25
(a) 數位頻率偵測器 .............................................................................. 26
(b) 取樣器 ............................................................................................ 27
(c) 上下數產生器 .................................................................................. 29
(d) 溫度計碼計數器 .............................................................................. 29
(e) 閂鎖 ................................................................................................ 30
(f) 數位類比轉換器 .............................................................................. 30
4.4.2 可適性相位頻率偵測器 ............................................................... 33
4.4.3 基本鎖相迴路 .............................................................................. 35
(a) 相位頻率偵測器 .............................................................................. 36
(b) 單端轉雙端電路 .............................................................................. 38
(c) 電荷幫浦 ......................................................................................... 39
(d) 迴路濾波器 ..................................................................................... 40
(e) 電壓控制震盪器 .............................................................................. 41
(f) 電流模式緩衝器 .............................................................................. 44
(g) 雙端轉單端電路 .............................................................................. 45
(h) 除頻器 ............................................................................................ 47
第5 章 晶片模擬結果與實現 .............................................................................. 49
5.1 快速鎖定鎖相迴路模擬結果 .................................................................. 49
5.1.1 頻帶選擇器模擬結果 ................................................................... 49
5.1.2 頻帶上加速機制模擬結果 ............................................................ 51
5.1.3 全電路模擬結果 .......................................................................... 52
5.2 逐一切換頻帶做法模擬 ......................................................................... 55
5.3 額外開啟電流做法模擬 ......................................................................... 57
5.4 窄頻寬條件模擬 .................................................................................... 58
5.5 晶片佈局 ............................................................................................... 60
5.6 電路規格 ............................................................................................... 63
5.7 量測考量 ............................................................................................... 64
第6 章 結論與未來研究方向 .............................................................................. 67
6.1 結論 ...................................................................................................... 67
6.2 未來研究方向 ........................................................................................ 67
參考文獻 ............................................................................................................. 69
參考文獻 參考文獻
[1] Jinbao Lan, Fengchang Lai hiqi g G u Ji w i h g “A
nonlinear phase frequency detector for fast-lock phase- k ” IEEE 8th
International Conference ASIC, pp. 1117-1120, 2009.
[2] E ji Y v i “ i wi -linear phase frequency detector for fast-lock
phase- k ” i Proc. IEEE Int. Midwest Symposuim on Circuits and System
(MWSCAS), Aug. 2011.
[3] Chi-Sheng Lin, Ting-Hsu Chien, Chin-Long Wey, Chun-Ming Huang, and
Ying- g Ju g “A g i i g i g wi ki g
range phase- k ” IEEE J. Solid-State Circuits, vol.44, no.11,
pp.3102 3109, Nov. 2009.
[4] Wei-Hao Chiu, Yu-Hsiang Huang, Tsung- i i “A y i h
compensation technique for fast-locking phase- k ” IEEE J. Solid-State
Circuits, vol.45, no.6, pp.1137 1148, Jun. 2010.
[5] T.-H. Lin and Y.-J i “A Agi qu y ib i T h iqu
10-G ” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340 349, Feb.
2007.
[6] J i J T J g h “A -MHz to 1-GHz sub-picosecond
clock generator with a fast and accurate automatic frequency calibration in 0.13-um
” i Proc. IEEE Asian Solid-State Circuits Conf., 2007, pp. 67 70.
[7] Hui Dong Lee; Nam-Sik Ryu; Jae- Ju g; w g hu “A -GHz
LC-V b wi h Au i qu y ” i Proc. IEEE Int.
Symp. Wireless Commun. Syst.(ISWCS), Aug. 2012, pp. 860 864.
[8] Yun-Ta Tsai, Shen- u iu “A -locking phase-locked loop using CP control
G ” i Proc. IEEE VLSI-DAT Symp., Apr. 2012, pp. 1-4
[9] Yu-Fn Lin, A 2.5GHz Fast Locking Self-Calibration Phase-Locked Loop Designed
in 90nm Process (Master paper’08).
[10] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006
[11] Song-Yu Yang, Wei-Zen Chen, and Tai-Y u u “A W G A igi
Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90
T h gy ” IEEE J. Solid-State Circuits, vol.45, no.3, pp.578 586,
Mar. 2010.
[12] Chao-Ching Hung and Shen- u iu “A -GHz Fast-Locked All-Digital
Phase-Locked Loop Using a Modified Bang- g A g i h ” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 58, no. 6, pp. 321 325, Jun. 2011.
[13] J w k hi yu h hi “A 3.8 GHz Fractional-N PLL Frequency
Synthesizer With Fast Auto- ib i wi h qu y ”
IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 665 675, Mar. 2012.
[14] Kyoungho Woo, Yong Liu, Eunsoo Nam, and h “ -Lock Hybrid
PLL Combining Fractional-N and Integer- i i g wi h ”
IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 379 389, Feb. 2008.
[15] Bo Zhao, Yong Lian, u h g Y g “A w-Power Fast-Settling Bond-Wire
Frequency Synthesizer With a Dynamic- wi h h ” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 60, no. 5, pp. 1188 1199, May 2013.
[16] Yu g u Xu yi Yu W g u h w W g hihu W g “A
Settling Dual-Path Fractional- PLL With Hybrid-Mode Dynamic Bandwidth
” IEEE Microw. Wireless Compon. Lett., vol. 20, no.8, pp. 462 464, Aug.
2010.
[17] Woo-Yeol Shin, Manho Kim, Gi- g uhw i “A
Fast-Acquisition PLL using Split Half- u y w i ”
IEEE Trans. Consumer Electron., vol. 56, no.3, pp. 1856-1859, Aug. 2010.
[18] Liang Wang, Qirong Jiang, Lucheng Hong, Chunpeng Zhang, and Yingdong Wei,
“A v h -Locked Loop Based on Frequency Detector and Initial Phase Angle
” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4538 4549, Oct. 2013.
[19] Giuseppe Fedele, Ciro Picardi, i “A w E i ig T ki g
gy h u i g u i h ” IEEE Trans. Ind. Electron.,
vol. 56, no. 10, pp. 4079 4087, Oct. 2009.
[20] hi ji hi k “A bu i g -Phase PLL System With Stable and Fast
T ki g ” IEEE Trans. Ind. Appl., vol. 44, no. 2, pp. 624 633, Mar./Apr. 2008.
[21] i g u h ih u i y vi J A “A Tw -Stage
Sensing Technique for Dynamic u A ” IEEE. Trans. Wireless
Commun., vol. 8, no.6, pp. 3028-3037, Jun. 2009.
[22] Saeed Golestan, Mohammad Monfared, and Francisco D. Freijedo,
“ ig -Oriented Study of Advanced Synchronous Reference Frame Phase-Locked
” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 765 778, Feb. 2013.
[23] Saeed Golestan, Mohammad Monfared, Francisco D. Freijedo, and Josep M.
Gu “ y i A A v i g - h u u ” IEEE
Trans. Ind. Electron., vol. 60, no. 6, pp. 2167 2177, Jun. 2013.
[24] Chin-Cheng Kuo, Meng-Jung Lee, Chien-Nan (Jimmy) Liu, and Ching-Ji Huang,
“ i i A y i i i E U i g A u
h vi ” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 56, no. 6, pp.
1160 1172, Jun. 2009.
[25] M. Nakamura, A. Yamagishi, M. Harada, M. Nakamura and K. Kishine,
“ -acquisition PLL using fully digital natural-frequency- wi hi g h iqu ”
IEE Electronics Letters, vol. 44, no. 4, pp. 267-268 , Feb. 2008.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2013-11-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明