博碩士論文 100521027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.188.168.28
姓名 廖翊君(Yi-chun Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於可見光通訊系統之實係數快速傅立葉轉換的單路徑延遲回授架構設計
(Design of Real FFT SDF Architecture for Visible Light Communication)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 可見光通訊系統(Visible Light Communication,VLC)主要是透過LED照明設備發出肉眼無法察覺的高頻率明暗閃爍之可見光,在不影響日常照明的使用下同時傳遞資料訊息。本論文使用OFDM技術來減輕符際干擾(Inter Symbol Interference,ISI)等問題,在訊號編碼上使用QPSK。本篇所模擬VLC系統的取樣頻率為200MHz,其中OFDM使用64點的FFT,OFDM symbol的長度為360ns,我們模擬不同房間大小之系統效能,其中房間大小為(7.73 m, 6.6 m, 2.8 m)之系統效能在〖SNR〗_e = 15 dB時,系統之位元錯誤率(Bit Error Rate,BER)可達到10-5至10-6。由於基頻訊號是對光的強度作調變,在時域的訊號將只會是純實數,因此使用實係數之(Real FFT,RFFT)來降低運算量。
本論文提出RFFT的單路徑延遲回授(Single-path Delay Feedback,SDF)架構,利用Hermitian symmetry的共軛對稱特性將複數FFT的多餘頻域輸出訊號予以移除,以節省運算量和硬體複雜度。並根據實複數值混和路徑型態的訊號流程圖(Signal Flow Graph,SFG)來設計,主要原因除了增加硬體的使用率之外,也是為了降低複數型態延遲單元的數量。我們針對第三級的複數乘法運算做適當的重新排程,再搭配硬體共用的方式以更有效率地使用延遲單元。所提出的硬體使用了(4 log_2⁡N-6)個實數加法器、(log_8⁡N-3/2)個複數乘法器和(9N/8-1)個實數延遲單元,因此相較於其他RFFT的多路徑延遲交換(Multi-path Delay Commutator,MDC)架構以及CFFT的SDF架構,我們所使用的複數乘法器數目也相對的比較少。
摘要(英) Visible light communication (VLC) is an alternative of wireless communication and it transmits signals by LEDs illumination. In this paper, we modulate signals by OFDM technology to mitigate the inter symbol interference (ISI) caused by multipath effect and encode transmitted signals by QPSK. The sampling frequency is 200 MHz and the size of FFT and CP period is 64 point and 8 samples. Hence, the OFDM symbol period is 360 ns in the VLC system that we simulate. We simulate the VLC system in different room sizes. In the simulation of special room(7.73 m, 6.6 m, 2.8 m), a bit error rate (BER) of 10-5 to 10-6 is achieved under the 〖SNR〗_e = 15 dB. The OFDM baseband signal is used to modulate the LED intensity, and therefore the signals on the time domain will be only real value. Hence, we can use the real FFT (RFFT) to reduce operation.
This paper presents the single-path delay feedback (SDF) architecture for the FFT with real input samples. We take the advantage of Hermitian symmetry to save the computation and hardware complexity. The proposed N-point real FFT SDF architecture is based on the hybrid data-path SFG which is used to increase the hardware utilization and to reduce latency. With the proper scheduling in the stage 3 of the RFFT SDF architecture, we can use delay element efficiently by hardware sharing. Therefore, the proposed SDF architecture only requires (4 log_2⁡N-6) real adders, (log_8⁡N-3/2) complex multipliers and (9N/8-1) real delay elements. The hardware complexity is fewer than several real FFT multi-path delay commutator (MDC) architecture and complex FFT SDF architecture.
關鍵字(中) ★ 可見光通訊
★ 實係數快速傅立葉轉換
★ 單路徑延遲回授架構
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第1章 緒論 1
1.1 簡介與研究動機 1
1.2 論文架構 2
第2章 室內可見光通訊系統介紹 3
2.1 可見光通訊與射頻通訊 3
2.2 室內無線可見光通訊基本架構 6
2.2.1 傳送端 6
2.2.2 室內通道環境 8
2.2.3 接收端 9
2.3 訊號調變 10
2.3.1 開關控鍵調變 (OOK) 10
2.3.2 可調式脈衝準位調變 (VPPM) 12
2.3.3 Multiple PPM (MPPM) 13
2.3.4 用於VLC之正交多頻分工技術 (Optical OFDM) 14
第3章 室內無線可見光通訊系統模擬 17
3.1 室內通道環境建設 17
3.1.1 通道模型統計特性 19
3.1.1.1 LOS 路徑 20
3.1.1.2 Non-LOS路徑 23
3.1.2 延遲擴展 (Delay Spread) 27
3.1.3 通道脈衝響應h(t) 28
3.2 模擬之optical OFDM系統 29
3.2.1 模擬系統之參數設定 30
3.2.2 系統架構圖 31
3.2.2.1 Optical OFDM - 傳送端 31
3.2.2.2 Optical OFDM - 通道 32
3.2.2.3 Optical OFDM - 接收端 33
3.2.3 模擬系統之效能評估 33
第4章 用於運算實數序列的快速傅立葉轉換演算法 37
4.1 傳統快速傅立葉演算法與硬體架構 37
4.1.1 不同基數之DIF演算法介紹 38
4.1.1.1 Radix-2 38
4.1.1.2 Radix-22 (Radix-4) 39
4.1.1.3 Radix-23 (Radix-8) 41
4.1.2 Pipelined-based硬體架構 42
4.1.2.1 單路徑延遲回授架構 42
4.1.2.2 多路徑延遲交換架構 43
4.1.2.3 SDF與MDC架構比較 44
4.2 使用複數FFT運算實數序列 46
4.2.1 直接使用複數FFT 46
4.2.2 Packing Algorithm 47
4.2.3 Doubling Algorithm 48
4.2.4 使用CFFT運算實數序列之演算法比較 49
4.3 實係數之快速傅立葉演算法 50
4.3.1 複數值路徑 (Complex-valued Path) [24] 51
4.3.2 全實數值路徑 (All Real-valued path) [26] 52
4.3.3 實複數值混和路徑 (Hybrid-valued path) [25] 52
4.4 所提出之新的運算排程方法 53
4.4.1 各運算層級之運算單元處理 55
4.4.2 各運算層級之延遲單元處理 59
第5章 硬體架構設計與實現 62
5.1 硬體設計流程 62
5.2 硬體介紹 64
5.2.1 SDF RFFT之硬體區塊 64
5.2.2 Post-processing & Reorder之硬體區塊 70
5.3 字元長度 76
5.4 硬體實現之結果與比較 79
第6章 結論 83
參考文獻 84
參考文獻 [1] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Submission Title: Visible Light Communication: Tutorial, Mar. 9 2008, doc.: IEEE 802.15 <08/0114-02>
[2] “世界領先 孫慶成教授發表新LED光色封裝技術,” 國立中央大學
[Online] Available: http://pine.cc.ncu.edu.tw/~ncutop1/?post_type=featured&p=1302 [Accessed: June 20, 2014]
[3] 蘇忠傑, “白光LED封裝技術,” 國立臺灣科技大學
[Online] Available: http://cece2.ntust.edu.tw/ezcatfiles/cece2/homepage/14/LED.htm [Accessed: June 20, 2014]
[4] O′brien, D., Zeng, L., Hoa Le-Minh, Faulkner G., Walewski J.W. and Randel S., “Visible Light Communications: challenges and possibilities,” Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pp. 1-5, Cannes, Sep. 2008
[5] 蘇緣峻, “利用光感測器陣列實現可見光通訊之干擾消除技術,” 國立臺北科技大學, July 2011
[6] Afgani, M.Z., Haas H., Elgala H. and Knipp D., “Visible Light Communication Using OFDM,” IEEE Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006. 2nd International Conference on, Barcelona, March 2006
[7] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Submission Title: VLC Dimming Proposal, Sep. 20 2009, doc.: IEEE 802.15- 15-09-0641-00-0007
[8] Kwonhyung Lee and Hyuncheol Park, “Modulation for Visible Light Communications With Dimming Control,” IEEE Photonics Technology Letters, vol. 23, No. 16, Aug. 15 2011
[9] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Title: Samsung, Intel, ETRI and CSUS merged proposal text, Nov. 2009, doc.: IEEE P802.15-09-0786-01-0007
[10] Elgala H., Mesleh R. and Haas H., “Indoor Broadcasting via White LEDs and OFDM,” IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, pp. 1127-1134, Aug. 2009
[11] Tanaka Y., Komine T., Haruyam, S. and Nakagawa M., “Indoor Visible Communication utilizing Plural White LEDs as Lighting,” Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on, Vol. 2, Sep. 2001
[12] Dayou Qian, Cvijetic N., Junqiang Hu and Ting Wang, “Optical OFDM Transmission in Metro/Access networks,” Optical Fiber Communication - incudes post deadline papers, 2009. OFC 2009. Conference on, IEEE, pp. 1-3, Mar. 2009
[13] Schmidt B., Lowery A.J. and Armstrong J., “Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM,” Journal of Lightwave Technology, Vol. 26, No. 1, pp. 196-203, Jan. 2008
[14] Kanonakis K., Tomkos I., Krimmel H., Schaich F., Lange C. and others, “An OFDMA-based Optical Access Network Architecture Exhibiting Ultra-High Capacity and Wireline-Wireless Convergence,” IEEE Communications Magazine, Vol. 50, No. 8, pp. 71-78, Aug. 2012
[15] Xie Zhang, Kaiyun Cui, Minyu Yao, Hongming Zhang and Zhengyuan Xu, “Experimental Characterization of Indoor Visible Light Communication Channels,” Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, IEEE, pp. 1-5, July 2012
[16] Komine T. and Nakagawa, M., “Fundamental Analysis for Visible-Light Communication System using LED Lights,” IEEE Transaction on Consumer Electronics, Vol. 50, No. 1, pp. 100-107, Feb. 2004
[17] Lubin Zeng, O′Brien D., Hoa Le-Minh, Kyungwoo Lee, Daekwang Jung and Yunje Oh, “Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System,” Circuits and Systems for Communications, 2008. ICCSC 2008. 4th IEEE International Conference on, pp.678-682, May. 2008
[18] J. B. Carruthers and S. M. Carroll, “Statistical impulse response models for indoor optical wireless channels,” International Journal of Communication Systems - Special Issue on Indoor Optical Wireless Communication Systems and Networks, Vol. 18, No. 3, pp. 267-284, April 2005
[19] Elgala H., Mesleh R., Haas, H. and Pricope B., “OFDM Visible Light Wireless Communication Based on White LEDs,” Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pp. 2185-2189, April 2007
[20] Saha N., Mondal R.K., Nam Tuan Le and Yeong Min Jang, “Mitigation of Interference Using OFDM in Visible Light Communication,” 2012 International Conference on ICT Convergence (ICTC), IEEE, pp. 159-162, Oct. 2012
[21] Komine T., Lee J.H., Haruyama S. and Nakagawa M., “Adaptive Equalization System for Visible Light Wireless Communication Utilizing Multiple White LED Lighting Equipment,” IEEE Transactions on Wireless Communications, Vol. 8, No. 6, pp. 2892-2900, June 2009
[22] “無線通道模型概論,” 國立中正大學 [Online] Available: http://web.ee.ccu.edu.tw/~wl/ofdm/class/class%20pdf/Channel%20model.pdf [Accessed: June 20, 2014]
[23] [Online] Available: http://viplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP_CHAP6.pdf
[Accessed: June 20, 2014]
[24] Garrido M., Parhi K.K. and Grajal J., “A Pipelined FFT Architecture for Real-Valued Signals,” IEEE Transactions on Circuits and Systems – I: Regular Papers, Vol. 56, No. 12, pp. 2634-2643, Dec. 2009
[25] Ayinala M. and Parhi K.K., “FFT architectures for real-valued signals based on radix-23 and radix-24 algorithms,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 9, pp. 2422-2430, Feb. 2013
[26] Salehi S.A., Amirfattahi R. and Parhi K.K., “Pipelined Architectures for Real-Valued FFT and Hermitian-Symmetric IFFT with Real Datapaths,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 60, No. 8, pp. 507-511, Aug. 2013
[27] Ayinala M., Brown M. and Parhi K.K., “Pipelined Parallel FFT Architectures via Folding Transformation,” IEEE Transactions on VLSI Systems, Vol. 20, No. 6, pp. 1068-1081, June 2012.
[28] T. D. Chiueh and Pei-Yun Tsai, “OFDM Baseband Receiver Design for Wireless Communications,” John Wiley, 2007.(ISBN: 978-0-470-82234-0)
[29] Elgala H., Mesleh, R. and Haas, H., “Practical Considerations for Indoor Wireless Optical System Implementation using OFDM,” IEEE Telecommunications, pp. 25-29, June 2009
指導教授 蔡佩芸(Pei-yun Tsai) 審核日期 2014-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明