博碩士論文 100521035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.118.200.77
姓名 蕭力函(Li-Han Hsiao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氧化鋅磊晶膜之熱退火特性分析與電晶體製作
(Characterization of Annealed ZnO Films and Fabrication on Thin-Film Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在未來顯示器尺寸與解析度不斷提高的趨勢下,氧化鋅相關薄膜電晶體是目前最具潛力取代非晶矽與低溫多晶矽為主的電晶體,主要原因在於氧化鋅電晶體具有較高的載子遷移率(>10 cm2/ V∙s)、對可見光較不敏感、以及可與目前薄膜電晶體製程上的匹配性。
為了製備高載子遷移率的氧化鋅薄膜,文中首先探討氧化鋅與鎵摻雜氧化鋅在氧氣或氮氣中以不同熱退火溫度處理的結果,並以其結構、電性與光學上的變化,探討氧化鋅中缺陷的產生與抑制,最終歸納出一個最佳的熱退火溫度與環境。
利用上述成果,我們利用該氧化鋅製作一金屬-絕緣層-半導體電晶體(MIS-FET),同時討論不同絕緣層結構之電晶體的元件特性。最佳的元件特性其最大開啟電流密度(IOn)可達到33 mA/mm,同時維持開關比(IOn/IOff ratio)達到108,次臨界斜率(sub-threshold slope, SS)為150mV/decade,經過計算,等效的通道載子遷移率可達35.2 cm2/ V∙s,元件在關閉的情況下,崩潰電壓可達125V。元件特性顯示,經過熱退火後的氧化鋅電晶體具有應用的潛力。
摘要(英) In the future, when the size and resolution of displays continuously increase, ZnO-based thin film transistor (TFT) is one of the potential replacement for amorphous-Si and low temperature poly-Si TFTs based on its higher mobility (>10 cm2/ V∙s), less light sensitive and compatible fabrication process.
To achieve a high mobility ZnO film, the properties of annealed ZnO and Ga-doped ZnO in oxygen or nitrogen ambient were investigated. Structural, electrical and optical properties were summarized to explain the generation-annihilation of defects. In the end, an optimal annealing temperature and environment were proposed.
According to the results mentioned above, a ZnO-based metal-insulator-semiconductor TFT was fabricated. Besides, different insulators were also introduced in these TFTs. A high On-state current density of 33 mA/mm and IOn/IOff ratio over 108 were simultaneously obtained. The sub-threshold swing was 150mV/decade. The effective channel mobility is near 35.2 cm2/ V∙s extracted from the formula. These results indicate that annealed ZnO materials have promising characteristics to apply to TFTs.
關鍵字(中) ★ 氧化鋅
★ 電晶體
★ 熱退火
★ 缺陷
★ 光激發光譜
關鍵字(英) ★ ZnO
★ transistor
★ annealing
★ defect
★ photoluminescence
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究動機與方法 5
1-4 論文架構 6
第二章 實驗設備與原理 7
2-1 分子束磊晶系統簡介 7
2-2 量測儀器簡介 8
2-2-1 X光繞射儀 8
2-2-2 霍爾量測系統 9
2-2-3 光激發螢光光譜量測系統 11
2-2-4 化學分析電子儀 12
第三章 氧化鋅磊晶膜之熱退火特性分析 13
3-1 前言 13
3-2 熱退火實驗設計 13
3-3 氧化鋅結構分析 14
3-4 氧化鋅電氣特性分析 18
3-5 氧化鋅光譜分析 23
3-6 氧化鋅化學分析 30
3-7 本章結論 33
第四章 氧化鋅電晶體製作及電性分析 34
4-1 前言 34
4-2 氧化鋅試片製備 34
4-3 氧化鋅電晶體製作流程 36
4-4 元件特性分析與討論 40
4-5 本章結論 52
第五章 結論 53
參考文獻 55
參考文獻 [1] 工研院IEK ITIS計畫:2012年台灣平面顯示器產業產值1.2兆新台幣, 2013年2月23日. 取自: http://www.eettaiwan.com/ART_8800681972_480702_NT_bd257980.HTM
[2] Digitimes企劃:2012平面顯示器最新技術發展趨勢與市場觀察, 2011年12月22日. 取自: http://www.digitimes.com.tw/tw/b2b/Seminar/shwnws_new.asp?CnlID=18&cat=99&product_id=051A01208&id=0000264866_ZFM91F4M5Y8IHH7HFQV1W#ixzz2Wu3pht00
[3] 蕭君暉:鴻海 推70吋4K2K電視, 2013年6月9日. 取自: http://udn.com/NEWS/FINANCE/FIN3/7952161.shtml
[4] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, p. 044305, 2010.
[5] 顏精一:電晶體驅動能力優異Oxide TFT實現超高畫素面板, 2012月5月. 取自: http://www.mem.com.tw/article_content.asp?sn=1205040001
[6] D. C. Look, et al, "Electrical properties of bulk ZnO," Solid State Communications, vol. 105, pp. 399-401, 1998.
[7] J. D. Albrecht, et al, "High field electron transport properties of bulk ZnO," Journal of Applied Physics, vol. 86, p. 6864, 1999.
[8] S.-M. Park, et al, "Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition," Thin Solid Films, vol. 513, pp. 90-94, 2006.
[9] T. Minami, et al, "High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation," Thin Solid Films, vol. 416, pp. 92-96, 2002.
[10] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, pp. S35-S44, 2005.
[11] H. Liu, et al, "Transparent conducting oxides for electrode applications in light emitting and absorbing devices," Superlattices and Microstructures, vol. 48, pp. 458-484, 2010.
[12] Y. W. Heo, et al, "Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy," Journal of Applied Physics, vol. 98, p. 073502, 2005.
[13] B. Du Ahn, et al, "Influence of thermal annealing ambient on Ga-doped ZnO thin films," Journal of Crystal Growth, vol. 309, pp. 128-133, 2007.
[14] R. L. Hoffman, et al, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol. 82, p. 733, 2003.
[15] K. Nomura, et al, "Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," Science, vol. 300, pp. 1269-72, May 23 2003.
[16] K. Koike, et al, "Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy," Applied Physics Letters, vol. 87, p. 112106, 2005.
[17] P. F. Carcia, et al, "High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition," Applied Physics Letters, vol. 88, p. 123509, 2006.
[18] J.-S. Park, et al, "Control of threshold voltage in ZnO-based oxide thin film transistors," Applied Physics Letters, vol. 93, p. 033513, 2008.
[19] H. U. T. Kawamura, et al, "1.5-V Operating Fully-Depleted Amorphous Oxide Thin Film Transistors achieved by 63-mV/dec Subthreshold Slop," presented at the IEDM, San Francisco, CA, US, 2008,12.
[20] U. Özgür, et al, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[21] C. H. Ahn, et al, "A comparative analysis of deep level emission in ZnO layers deposited by various methods," Journal of Applied Physics, vol. 105, p. 013502, 2009.
[22] H. S. Kang, et al, "Investigation on the variation of green, yellow, and orange emission properties of ZnO thin film," Superlattices and Microstructures, vol. 39, pp. 193-201, 2006.
[23] 汪建民,材料分析,中國材料科學學會,民國八十七年。
[24] D. A. Neamen, SEMICONDUCTOR PHYSICS AND DEVICES, 1992.
[25] Y. Chen, et al, "Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization," Journal of Applied Physics, vol. 84, p. 3912, 1998.
[26] S.-K. Hong, et al, "Control of crystal polarity in a wurtzite crystal:ZnO films grown by plasma-assisted molecular-beam epitaxy on GaN," Physical Review B, vol. 65, 2002.
[27] Q.-B. Ma, et al, "Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO:Ga films," Scripta Materialia, vol. 58, pp. 21-24, 2008.
[28] B. Zhang, et al, "Influence of Zn/O ratio on structural, electrical and optical properties of ZnO thin films fabricated by plasma-assisted molecular beam epitaxy," Journal of Alloys and Compounds, vol. 503, pp. 155-158, 2010.
[29] F. Vigué, et al, "Defect characterization in ZnO layers grown by plasma-enhanced molecular-beam epitaxy on (0001) sapphire substrates," Applied Physics Letters, vol. 79, p. 194, 2001.
[30] R. Chierchia, et al, "Microstructure of heteroepitaxial GaN revealed by x-ray diffraction," Journal of Applied Physics, vol. 93, p. 8918, 2003.
[31] X. Q. Shen, et al, "Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates," Applied Physics Letters, vol. 86, p. 021912, 2005.
[32] S. K. Mathis, et al, "Modeling of threading dislocation reduction in growing GaN layers," Journal of Crystal Growth, vol. 231, pp. 371-390, 2001.
[33] H. Tampo, et al, "Degenerate layers in epitaxial ZnO films grown on sapphire substrates," Applied Physics Letters, vol. 84, p. 4412, 2004.
[34] D. C. Look, et al, "Mobility analysis of highly conducting thin films: Application to ZnO," Applied Physics Letters, vol. 96, p. 062102, 2010.
[35] Z. Q. Chen, et al, "Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements," Journal of Applied Physics, vol. 94, p. 4807, 2003.
[36] M. Chen, et al, "Intrinsic limit of electrical properties of transparent conductive oxide films," Journal of Physics D: Applied Physics, vol. 33, pp. 2538-2548, 2000.
[37] H. C. Park, et al, "Photoluminescence of Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy," Journal of Applied Physics, vol. 102, p. 073114, 2007.
[38] A. Escobedo-Morales and U. Pal, "Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping," Applied Physics Letters, vol. 93, p. 193120, 2008.
[39] H. von Wenckstern, et al, "Donor-like defects in ZnO substrate materials and ZnO thin films," Applied Physics A, vol. 88, pp. 135-139, 2007.
[40] D. C. Look, "Recent advances in ZnO materials and devices," Materials Science and Engineering: B, vol. 80, pp. 383-387, 2001.
[41] D. Look, et al, "Residual Native Shallow Donor in ZnO," Physical Review Letters, vol. 82, pp. 2552-2555, 1999.
[42] B. D. Ahn, et al, "Low temperature conduction and scattering behavior of Ga-doped ZnO," Applied Physics Letters, vol. 91, p. 252109, 2007.
[43] T. Makino, et al, "Majority-carrier mobilities in undoped andn -type doped ZnO epitaxial layers," physica status solidi (c), vol. 3, pp. 956-959, 2006.
[44] D. C. Look, et al, "Electrical and optical properties of defects and impurities in ZnO," Physica B: Condensed Matter, vol. 340-342, pp. 32-38, 2003.
[45] D. C. Look, et al, "Effects of surface conduction on Hall-effect measurements in ZnO," Superlattices and Microstructures, vol. 38, pp. 406-412, 2005.
[46] T. Makino, et al, "Electron transport in ZnO thin films," Applied Physics Letters, vol. 87, p. 022101, 2005.
[47] R. Schifano, et al, "Defects in virgin hydrothermally grown n-type ZnO studied by temperature dependent Hall effect measurements," Journal of Applied Physics, vol. 106, p. 043706, 2009.
[48] X. Yang, et al, "Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent Hall measurements," Journal of Applied Physics, vol. 104, p. 073727, 2008.
[49] K. T. Roro, et al, "Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition," Semiconductor Science and Technology, vol. 23, p. 055021, 2008.
[50] L. Wang and N. C. Giles, "Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy," Journal of Applied Physics, vol. 94, p. 973, 2003.
[51] X. J. Wang, et al, "Effects of stoichiometry on defect formation in ZnO epilayers grown by molecular-beam epitaxy: An optically detected magnetic resonance study," Journal of Applied Physics, vol. 103, p. 023712, 2008.
[52] T. M. Bo̸rseth, et al, "Identification of oxygen and zinc vacancy optical signals in ZnO," Applied Physics Letters, vol. 89, p. 262112, 2006.
[53] B. Lin, et al, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, p. 943, 2001.
[54] J. Liu, et al, "Identification of zinc and oxygen vacancy states in nonpolar ZnO single crystal using polarized photoluminescence," Applied Physics Letters, vol. 97, p. 231907, 2010.
[55] J. D. Ye, et al, "Production of high-quality ZnO films by the two-step annealing method," Journal of Applied Physics, vol. 96, p. 5308, 2004.
[56] S. A. Studenikin, et al, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," Journal of Applied Physics, vol. 84, p. 2287, 1998.
[57] B. K. Meyer, et al, "Shallow donors and acceptors in ZnO," Semiconductor Science and Technology, vol. 20, pp. S62-S66, 2005.
[58] M. D. McCluskey and S. J. Jokela, "Defects in ZnO," Journal of Applied Physics, vol. 106, p. 071101, 2009.
[59] T. Makino, et al, "Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga," Applied Physics Letters, vol. 85, p. 759, 2004.
[60] Z. Yang, et al, "Ga-related photoluminescence lines in Ga-doped ZnO grown by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 94, p. 072101, 2009.
[61] D. O. Demchenko, et al, "Impurity complexes and conductivity of Ga-doped ZnO," Physical Review B, vol. 84, 2011.
[62] J. A. Sans, et al, "Thermal instability of electrically active centers in heavily Ga-doped ZnO thin films: X-ray absorption study of the Ga-site configuration," Applied Physics Letters, vol. 91, p. 221904, 2007.
[63] H. J. Ko, et al, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, p. 3761, 2000.
[64] C. Lee, et al, "IZO/Al/GZO multilayer films to replace ITO films," Journal of Materials Science: Materials in Electronics, vol. 19, pp. 981-985, 2007.
[65] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, 2007.
[66] W.-T. Chen, et al, "Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In-Ga-Zn-O Thin-Film Transistors," IEEE Electron Device Letters, vol. 32, pp. 1552-1554, 2011.
[67] D. Gupta, et al, "Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface," Applied Physics Letters, vol. 93, p. 224106, 2008.
[68] R. L. Hoffman, "ZnO-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, p. 5813, 2004.
[69] K. Okamura, et al, "Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility," Applied Physics Letters, vol. 94, p. 183503, 2009.
[70] P. Barquinha, et al, "Toward High-Performance Amorphous GIZO TFTs," Journal of The Electrochemical Society, vol. 156, p. H161, 2009.
[71] K. Remashan, et al, "ZnO-based thin film transistors having high refractive index silicon nitride gate," Applied Physics Letters, vol. 91, p. 182101, 2007.
[72] P. F. Carcia, et al, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, p. 1117, 2003.
[73] I.-D. Kim, et al, "Low-voltage ZnO thin-film transistors with high-KBi1.5Zn1Nb1.5O7 gate insulator for transparent and flexible electronics," Applied Physics Letters, vol. 87, p. 043509, 2005.
[74] K. Kang, et al, "High field-effect mobility ZnO thin-film transistors with Mg-doped Ba0.66Sr0.4TiO3 gate insulator on plastic substrates," Applied Physics Letters, vol. 90, p. 043502, 2007.
[75] H.-H. Hsieh and C.-C. Wu, "Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes," Applied Physics Letters, vol. 91, p. 013502, 2007.
[76] S. Chang, et al, "Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure," Applied Physics Letters, vol. 92, p. 192104, 2008.
[77] K. Lee, et al, "Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric," Applied Physics Letters, vol. 89, p. 133507, 2006.
[78] L. Zhang, et al, "High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature," Applied Physics Letters, vol. 95, p. 072112, 2009.
[79] H. Frenzel, et al, "ZnO-based metal-semiconductor field-effect transistors on glass substrates," Applied Physics Letters, vol. 95, p. 153503, 2009.
[80] A. Lu, et al, "Low-voltage transparent electric-double-layer ZnO-based thin-film transistors for portable transparent electronics," Applied Physics Letters, vol. 96, p. 043114, 2010.
[81] K. Remashan, et al, "High Performance MOCVD-Grown ZnO Thin-Film Transistor with a Thin MgZnO Layer at Channel/Gate Insulator Interface," Journal of The Electrochemical Society, vol. 157, p. H1121, 2010.
[82] J. J. Siddiqui, et al, "Bias-Temperature-Stress Characteristics of ZnO/HfO2 Thin-Film Transistors," IEEE Transactions on Electron Devices, vol. 59, pp. 1488-1493, 2012.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2013-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明