博碩士論文 100521037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.147.89.105
姓名 謝雨蓁(Yu-Chen Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 標準互補式金屬氧化物半導體結合微機電製程之850-nm側面照光矽光檢測器
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用0.18 μm CMOS標準製程結合微機電(MEMS)製程形成一側面照光之850 nm矽光檢測器;結構乃使用標準製程形成一水平式光檢測器,再利用微機電製程蝕刻至元件邊緣,使其露出照光面,並利用透鏡式光纖(lensed fiber)直接照射至元件主動層。與傳統之垂直照光式光檢測器比較,可證實側面照光之方式確實降低了基板區因入射光所形成的擴散載子,進而大幅提升元件之頻寬。3-dB頻寬的改善可由垂直照光光檢測器之0.9 GHz提升至側面照光元件之3.4 GHz。
利用思發科技公司之二維元件模擬軟體模擬證明,降低基板區之照光量,可改善擴散載子成份造成的頻率響應滑落(roll-off)情形,達到提升頻寬的效果。另外,本論文針對側面照光光檢測器之尺寸進行分析,因為850 nm波長之光的穿透深度(penetration depth)僅有約20 μm,故當元件之主動區長度較長時,雖然其響應度會增加,但其頻寬值卻會下降。當元件之主動區長度為20 μm時,其頻寬值可改善至5.4 GHz。
摘要(英) This study examines edge-illuminated silicon photodiodes (PDs) fabricated with standard CMOS technology operating at 850-nm wavelength. A micro-electro-mechanical systems process (MEMS) is employed to expose the illuminated surface and achieve edge illumination. A single-mode lensed fiber is employed to inject light into the depletion region of the PD directly, limiting and reducing the diffusive carriers within the bulk Si substrate. Using this procedure achieves greater performance in 3-dB bandwidth than the vertically illuminated PD in this study. The 3-dB bandwidth for the vertically illuminated PD is only 0.9 GHz because of the critical diffusion component. However, the diffusion component generated in the bulk Si substrate is reduced, the 3-dB bandwidth for the edge-illuminated PD is improved to 3.4 GHz. Moreover, Silvaco TCAD simulation is used to verify that the diffusion roll-off could be improved by reducing the diffusion component of photocurrent.
Finally, the characteristics of the different size edge-illuminated PDs are investigated. When the length of PD’s active region is longer than 20 μm, the 3-dB bandwidth will degrade. It’s because the penetration depth of the 850 nm-wavelength light into Si is less than 20 μm. The best 5.4 GHz high bandwidth is obtained from an edge-illuminated PD with a 20 μm ×15.6 μm active region.
關鍵字(中) ★ 光檢測器
★ 累崩光檢測器
★ 標準CMOS製程
★ 側面照光
★ 微機電製程
關鍵字(英) ★ Avalanche photodiodes
★ CMOS integrated circuits
★ edge-illuminated photodiodes
★ micro-electro-mechanical systems (MEMS)
★ photodetectors
★ photodiodes
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 導論 1
1.1 研究動機 1
1.2 相關研究發展 4
1.3 論文架構 12
第二章 光檢測器簡介 13
2.1 簡介 13
2.2 基本原理及特性 13
2.2.1 光檢測器工作原理 13
2.2.2 響應度及累增增益 15
2.2.3 光檢測器響應時間分析 17
2.3 垂直照光與側面照光光檢測器 18
2.4 標準CMOS製程與微機電(MEMS)製程簡介 19
2.4.1 以標準CMOS製程實現光檢測器 19
2.4.2 微機電製程介紹 22
2.5 結論 23
第三章 標準CMOS製程之側面照光光檢測器 24
3.1 簡介 24
3.2 光檢測器頻率響應之模擬與分析 24
3.3 元件模擬與設計 29
3.4 元件量測結果 39
3.4.1 元件直流特性與響應度 39
3.4.2 元件頻率響應 44
3.5 光檢測器等效電路模型 48
3.5.1 CMOS光檢測器之阻抗特性 48
3.5.2 光檢測器之模型萃取 49
3.6 結論 60
第四章 側面照光光檢測器之尺寸分析 61
4.1 簡介 61
4.2 元件設計 61
4.3 元件量測結果 63
4.3.1 元件直流特性與響應度 63
4.3.2 元件頻率響應 68
4.4 元件模擬驗證 71
4.4 光檢測器等效電路模型 73
4.5 結論 83
第五章 總結 84
參考文獻 85
參考文獻 [1] S. Radovanovic, “High-Speed Photodiodes in Standard CMOS Technology,” Print Partners Ipskamp, 2004.
[2] H. J. R. Dutton, Understanding Optical Communications. Sep. 1998.
[3] J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE J. Quantum Electron., vol. 48, No.2, Feb. 2012.
[4] C. Rooman, D. Coppée, and M. Kuijk, “Asynchronous 250-Mb/s Optical Receivers with Integrated Detector in Standard CMOS Technology for Optocoupler Applications,” IEEE J. Solid-State Circuits, vol.35, No.7, July, 2000.
[5] M. J. Lee and W. Y. Choi, “A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product,” Opt. Express, vol. 18, Nov. 2010.
[6] B. Ciftcioglu, L. Zhang, J. Zhang, J. R. Marciante, J. Zuegel, R. Sobolewski, and H. Wu, "Integrated Silicon PIN Photodiodes Using Deep N-Well in a Standard 0.18-μm CMOS Technology,” IEEE J. Lightwave Technol., vol. 27, no. 15, Aug. 2009.
[7] K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-Injection-Type and Electron-Injection-Type Silicon Avalanche Photodiodes Fabricated by Standard 0.18 μm CMOS Process,” IEEE Photon. Technol. Lett., vol. 22, no. 12, Jun. 2010.
[8] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon. Technol. Lett., Vol. 15, No. 5, pp.745-747, May. 2003.
[9] S. G. Thomas, S. Csutak, R.E. Jones, S. Bharatan, C. Jasper, R. Thomas, T. Zirkle and J.C. Campbell, “CMOS-compatible photodetector fabricated on thick SOI having deep implanted electrodes, ” Electron. Lett., vol. 38, no. 20, pp. 1202-1204, Sep. 2002.
[10] W. K. Huang, Y.-C. Liu and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” Electron. Lett., vol. 44, no. 1, Jan. 2008.
[11] F.-P. Chou, G.-Y. Chen, C.-W. Wang, Z.-Y. Li, Y.-C. Liu, W.-K. Huang, and Y.-M. Hsin, “Design and Analysis for a 850 nm Si Photodiode Using the Body Bias Technique for Low-voltage Operation,” IEEE J. Lightwave Technol., vol. 31, no. 6, Mar. 2013.
[12] S. B. Alexander, Optical Communication Receiver Design. SPIE Press, 1997.
[13] Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall, 2001
[14] G. Keiser, Optical Fiber Communications. McGRAW Hill, 2000.
[15] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc, 2007.
[16] H. Zimmermann, Integrated Silicon Optoelectronics. New York: Springer, 2000.
[17] J. E. Bowers and C. A. Bums, Jr., “Ultrawide-band long-wavelength p-i-n photodetectors,” Lightwave Technol. , vol. LT-5, 1987.
[18] J.-W. Shi, P.-H. Chiu, F.-H. Huang, Y.-S. Wu, Ja-Yu Lu, C.-K. Sun, C.-W. Liu, and P.-S. Chen, “Si/SiGe-based edge-coupled photodiode with partially p-doped photo absorption layer for high responsivity and high-power performance,” IEEE Appl. Phys. Lett., vol. 88, issue. 19, May 2006.
[19] J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, T. H. Loh, M. B. Yu, and S. J. Lee, Guo-Qiang Lo, and D.-L. Kwong, “Evanescent-Coupled Ge p-i-n Photodetectors on Si-Waveguide With SEG-Ge and Comparative Study of Lateral and Vertical p-i-n Configurations, ” IEEE Electron Device Lett., vol. 29, issue.5, May 2008.
[20] G. P. Agrawal, Fiber-Optical Communication Systems. John Wiley & Sons Inc 2002.
[21] S. Radovanovic, A. J. Annema and B. Nauta., “Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology,” IEEE Conf. on Electron Devices and Solid-State Circuits, Dec. 2003.
[22] F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, “Effect of Deep N-Well Bias in an 850-nm Si Photodiode Fabricated Using the CMOS Process,” IEEE Photon. Technol. Lett., vol. 25, no. 7, April 2013.
[23] CIC User Handbook - 0.18 μm CMOS MEMS Process v.2.1
[24] B. Nakhkoob, S. Ray, and M. M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express, Vol. 20, no. 10, May 2012.
[25] R. Fujimoto, K. Kojima, and S. Otaka., “A 7-GHz 1.8-dB NF CMOS low-noise amplifier, ” IEEE J. of Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002
[26] M. J. Lee, H.S. Kang, and W. Y, Choi, “Equivalent Circuit Model for Si Avalanche Photodetectors Fabricated in Standard CMOS Process”, IEEE Electron Device Lett., Vol. 29, No. 10, Oct. 2008.
[27] H.-S. Kang, “CMOS-Compatible High-Speed Silicon Photodetectors for Gbps Fiber-Fed Wireline/Wireless Communication Systems,” The Graduate School Yonsei University, Department of Electrical and Electronic Engineering. 2009.
[28] M. J. Lee, and W.Y. Choi, “Area-Dependent Photodetection Frequency Response Characterization of Silicon Avalanche Photodetectors Fabricated With Standard CMOS Technology,” IEEE Trans. on Electron Devices, Vol. 60, No. 3, March 2003.
[29] Y.-C. Wang, “Small-signal characteristics of a read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid State Electron., vol. 21, no. 4, April 1978.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明