博碩士論文 100521048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.118.30.8
姓名 ?智閔(Chih-Min Wen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超高速單載子傳輸光偵測器和其在超寬頻帶的波導耦合式兆赫茲光子傳輸器之應用
(Ultra-Fast Uni-Traveling Carrier Photodiodes and Their Applications of Waveguide-Coupled Photonic THz Transmitters with Extremely Wide Fractional Bandwidths)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在此篇論文中,我們成功的實現幾種能操作於兆赫茲頻率(THz)之單載子光偵測器(uni-traveling-carrier photodiodes, UTC-PD).首先,其中之一為近彈道單載子光偵測器(Near-ballistic uni-traveling-carrier photodiode, NBUTC-PD),藉由P型電場控制層(P-type charge layer)調整電場分佈維持電子在最高飄移速度(overshot drift-velocity)以達到高速頻寬表現. 此元件在兆赫茲頻率操作下之最佳偏壓通常位在-2V。然而,在此高偏壓操作下,高功率輸出時亦承受更高機率的熱失效(Thermal failure)。
為了解決此問題,我們提出另一種創新的設計N-UTC-PD,藉由在收集層插入N型電場控制層(N-type charge layer)重新最佳化電場分佈進一步加強抑制空間電荷屏蔽效應(Space charge screening effect, SCS)。此結構即使在較低的電場即-1V偏壓操作下,電子在跨越收集層時依然維持最高飄移速度(overshot drift-velocity)。總結來說,對新結構N-UTC-PD來說,它仍然具有優異的高頻寬表現(~315GHz),但它在功率輸出表現上會有些許衰減(-3dBm@280GHz)。而對NBUTC-PD來說,雖然它有較佳的輸出功率(-1.8dBm)及頻寬表現(~325GHz),但設計上需要更有效的散熱方式來避免熱失效。
然而,為了獲得超高速頻寬操作,設計上會使用較薄之吸收層,此類光偵測器會極大的犧牲響應度(Responsivity)進而造成光的吸收效率嚴重降低。為了解決此問題,我們藉由改良磊晶結構來獲取較高的響應度表現。最新設計的另一種GaAs0.5Sb0.5/In0.53Ga0.47As II型混合吸收層之單載子光偵測器。此3μm直徑主動區元件經由覆晶鍵結封裝後從量測結果可得知,與現有相關長波長(1.3–1.55μm)之光偵測器研究相比,亦具有適度合理之響應度值0.11A/W (NBUTC-PD:0.08A/W, N-UTC-PD:0.09A/W), O-E頻寬操作可高達0.33THz。 最後,我們成功實現此結構之光偵測器在正弦波封包(Sinusoidal envelope)產生之射頻頻率(Radio frequency, RF) 0.32 THz及63% 調製深度之光訊號操作下,在 ?1 V偏壓擁有13mA之飽和電流及-3dBm毫米波功率輸出。
透過使用此種光偵測器,我們也成功實現具有新穎前端波導耦合(Waveguide, WR6)設計之超寬頻、整合型光子傳輸器( Photonic transmitter);並藉由創新設計之高增益雙邊山脊型號角天線(Dual-ridge horn antenna)及設計平面電路波導激發,此傳輸器頻率操作可達紀錄之0.1至0.3THz帶寬,在無線傳輸過程中維持0.24THz 頻率操作下,接收端亦偵測高達31.6 W之毫米波輸出功率
摘要(英) In this thesis, we demonstrated several kinds of uni-traveling-carrier photodiodes (UTC-PDs) for THz operation. One among such is near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with P-type charge layer in order to sustain electrons overshot drift-velocity for high-speed bandwidth. The optimum bias for THz operation of this device is usually located at ?2 V. However, it has high probability of suffering from higher thermal failure under high output power due to high bias voltage.
For the sake of solving this issue, we report another kind of novel collector design by inserting N-type charge layer, N-UTCPD, which optimizes the profile of electric-field distribution in order to further suppress serious Space charge Screening (SCS) effect. The electrons will drift across the collector layer with overshoot velocity even under lower electric-field operation at ?1V. Overall, for new structure N-UTC-PD, it still has superiorly high bandwidth (~315GHz) performance, but the new structure also leads to degradation of output power(-3dBm@280GHz); for NBUTC-PD, it has better output power (-1.8dBm) and bandwidth (~325GHz), but this kind of photodiode must need better heat dissipation to avoid thermal failure.
However, by using thin absorption layer for ultra-speed bandwidth operation, low responsivity performance in these ultrafast PDs is a big issue. For this reason, we demonstrate a GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers UTC-PD by improving the epi-layer structure to get higher responsivity. According to the measurement results, the flip-chip bonding packaged device with active diameter of 3μm shows moderate responsivity of 0.11A/W (NBUTC-PD:0.08A/W, N-UTC-PD:0.09A/W) along with the recorded, really wide 3-dB optical-to-electrical bandwidth reaching 0.33 THz, among all those reported for long wavelength (1.3–1.55μm) PDs. A 13-mA saturation current and a continuous wave output with power as high as -3 dBm at ?1 V are successfully demonstrated at an operating radio frequency (RF) of 0.32 THz under an optical signal with a sinusoidal envelope and ?63% modulation depth for PD excitation.
By use of such kind of PDs, the broadband, integrated photonic transmitter front-end with a novel waveguide-coupled (WR6) is demonstrated. According to the measurement results with the novel design in high gain dual-ridge horn antenna and planar circuit for waveguide excitation, such transmitter achieves recorded-wide fractional bandwidth (100%; 0.1 to 0.3 THz) and high detected power in the receiving-end (31.6 W) at 0.24 THz through wireless transmission.
關鍵字(中) ★ 光偵測器
★ 波導
★ 光子傳輸器
★ 超高速
關鍵字(英) ★ Ultra-Fast
★ Photodiode
★ Waveguide
★ Transmitter
論文目次 Table of Contents
中文摘要……………………………..……………………………..….….i
Abstract……………………… ……………………………………….... ii
Acknowledgement…………………………………………………..…..iii
Table of Contents..………………………………………………….…...iv
List of figures……………………………………………………….…...vi
List of tables………………………………………………………….…xii
Chapter 1 Introduction…………………………………………………..1
1-1 Motivation………………………………………………………......1
1-2 Application of Photonic MMW Generation…………………….…..3
1-3 An Overview of Ultrafast Photodetectors……………………......…8
1-4 Challenge of High-Speed/Power Photodetectors toward THz
Bandwidth……………………………………………………….....11
1-5 Dissertation Organization……………………………………….....16
Chapter 2 Flip-Chip Bonding Package for THz Operation…………..19
2-1 Limitation on Bandwidth Performance of Package …………….....19
2-2 Application of Flip-Chip Bonding Technology…………………….24
2-3 Design and Simulations Results ……………………………….......26
2-4 Summary………………………………………………………..…..29
Chapter 3 Epitaxy Structure of Ultrafast UTC-PD…………………....32
3-1 Development of Uni-Traveling-Carrier Photodiode ………….........32
3-2 Design of Collector Layers in NBUTC-PD and N-UTC-PD…..….…33
3-3 Measurement Results….……………………………………….…...40
3-4 Summary ……………………………………………………….......49
v
Chapter 4 Photonic High-Power CW THz-Wave Generation Based on
Optical Pulse Train ………………………………………..…52
4-1 Optical Short Pulse Train for Photonic MMW Generation…….…...52
4-2 Femtosecond Optical Pulse Generator…………………………..….55
4-3 Measurement Results……………………………………………….58
4-4 Summary……………………………………………………............62
Chapter 5 Ultrafast UTC-PD with Type-II Absorber/Collector ...…...65
5-1 Motivation of Type-II Absorber/Collector in UTC-PD………..……65
5-2 GaAs0.5Sb0.5/InP for Zero-Bias Operation………………………..…66
5-3 GaAs0.5Sb0.5/In0.53Ga0.47As Type II for High-Power / THz
Operation………………………………………………………….…77
5-4 Summary……………….....................................................................88
Chapter 6 THz Photonic Transmitter/Mixer…………………….…...…92
6-1 Introduction……………………………………………………….…92
6-2 Design and Fabrication of Photonic Transmitter/Mixer…….....….....93
6-3 Measurement Setups and Results……………………………….….100
6-4 Summary……………………………………………………...........106
Chapter 7 Conclusion and Future Work………………………….…....109
7-1 Conclusion……………………………………………………..…...109
7-2 Future Work……………………………………………………..….110
Appendix A…………………………………………………………….....116
Appendix B…………………………………………………………….....121
PUBLICTION LIST .................................................................................123
參考文獻 [1.1] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. to, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[1.2] A. Hallal, S. Bouhier, and F. Bondu, “Synthesis of a 30-Hz linewidth wave tunable over 500 GHz,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 4, pp. 1367–1371, Apr. 2017.
[1.3] T. Nagatsuma et al., “1.55-μm photonic systems for microwave and millimeter-wave measurement,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1831–1839, Oct. 2001.
[1.4] S. Preu, “Components towards a photonics aided THz vector network analyzer,” in Proc. 2016 Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 2016, Paper no. W4K.4.
[1.5] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., pp. 83–87, 1997.
[1.6] T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys., vol. 36, pp. 6263–6268, 1997.
[1.7] T.Furuta, H. Ito, and T. Ishibashi,“Photocurrent dynamics of unitraveling-carrier and conventional pin-photodiodes,” Proc. Inst. Phys. Conf. Ser., no. 166, pp. 419–422, 2000.
[1.8] T. Ishibashi, “High speed heterostructure devices,” in Semiconductors and Semimetals. San Diego, CA: Academic, 1994, vol. 41, ch. 5, p. 333.
[1.9] E. S. Harmon, M. L. Lovejoy, M. R. Melloch, M. S. Lundstrom, D. Ritter, and R. A. Hamm, “Minority-carrier mobility enhancement in p+ InGaAs lattice matched to InP,” Appl. Phys. Lett., vol. 63, pp. 636–638,1993.
[1.10] K. Kato, S. Hata, K. Kawano, and A. Kozen, “Design of ultrawideband, high-sensitivity p-i-n photodetectors,” IEICE Trans. Electron., vol. E76-C, pp. 214–221, 1993.
[1.11] H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling-carrier photodiode,” Electron. Lett., vol. 36, pp. 2034–2036, Nov. 2000.
[1.12] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
[1.13] H. Ito et al., “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004.
[1.14] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, Nov./Dec. 2014, Art. no. 3804210.
[1.15] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012.
[1.16] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016.
[1.17] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express, vol. 18, no. 11, pp. 11105–11110, May 2010.
[1.18] Y. Muramoto, H. Fukano, and T. Furuta, “A Polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 10, pp. 3830–3834, Oct. 2006.
[1.19] X. Xie et al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, Jan. 2016.
[1.20] Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 626–632, May 2010.
[1.21] C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C–61940C–8 (2006).
[1.22] J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3.
[2.1] Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
[2.2] A. Leven, N. Kaneda, U.-V. Koch, and Y.-K. Chen, “Coherent receivers for practical optical communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK4.
[2.3]. H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90? Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 900107 (2014).
[2.4] C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T.-C. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y.-K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011).
[2.5] C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y.-K. Chen, “Packaged Monolithic Silicon 112 Gb/s Coherent Receiver,” IEEE Photonics Technol. Lett. 23(12), 762–764 (2011).
[2.6] K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK Coherent Receiver with Wide Dynamic Range and Excellent Common-mode Rejection Ratio,” in Proc. ECOC’11 (2011), paper Tu.3.LeSaleve.1.
[2.7] T. Richter, M. Kroh, J. Wang, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. G. Steffan, and C. Schubert, “Integrated Polarization-Diversity Coherent Receiver on Polymer PLC for QPSK and QAM signals,” in Proc. OFC’12 (2012), paper OW3G.1.
[2.8] M. L. Nielsen, L. Molle, T. Richter, and C. Schubert, ” Feasibility Study of SOA-preamplified Coherent Reception for 112 Gb/s DP-QPSK Unamplified Link,”′ in Proc. OFC’13 (2013), paper JTh2A.45 (2013).
[2.9] P. Runge, G. Zhou, F. Ganzer, S. Seifert, S. Mutschall, and A. Seeger,“Polarisation Insensitive Coherent Receiver PIC for 100Gbaud communication,” in Proc. OFC’16 (2016), paper Tu2D.5.
[2.10] K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
[2.11] S. B. Estrella, L. A. Johansson, M. L. Ma?anovi’c, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24(5), 365–367 (2012).
[2.12] M. Lu, H.-C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photonics Technol. Lett. 25(11), 1077–1080 (2013).
[2.13] C. Caillaud, G. Glastre, F. Lelarge, R. Brenot, S. Bellini, J.-F. Paret, O. Drisse, D. Carpentier, and M. Achouche, “Monolithic integration of a semiconductor optical amplifier and a high-speed photodiode with low polarization dependence loss,” IEEE Photonics Technol. Lett. 24(11), 897–899 (2012).
[2.14] M. Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100 Gbit/s Applications,” J. Lightwave Technol. 33(6), 1186–1190 (2015).
[2.15] G. Santini, C. Caillaud, J.-F. Paret, F. Pommereau, K. Mekhazni, C. Calo, and M. Achouche “High responsivity coherent photonic receiver integrating an SOA, a 90° hybrid, and high speed UTC photodiodes” Optics Express, Vol. 25, Issue 21, pp. 25719-25724 (2017)
[2.16] Frederic van Dijk, Gael Kervella, Marco Lamponi, Mourad Chtioui, Francois Lelarge, Eric Vinet,Yannick Robert, Martyn J. Fice, Cyril C. Renaud, Alvaro Jimenez, and Guillermo Carpintero,“Integrated InP Heterodyne Millimeter Wave Transmitter,”in IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 26, NO. 10, MAY 15, 2014
[2.17] Ho-Jin Song, Member, IEEE, Katsuhiro Ajito, Member, IEEE, Yoshifumi Muramoto, Atsushi Wakatsuki, Tadao Nagatsuma, Senior Member, IEEE, and Naoya Kukutsu, Member, IEEE, “Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW,”in IEEE Microwave and Wireless Components Lett., vol. 22, pp.363-365 NO. 7, July 2012
[2.18] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultrahigh-speed near-ballistic uni-traveling-carrier photodiodes under a 50 load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 1, 2012.
[2.19] A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “Highpower flip-chip mounted photodiode array,” Opt. Exp., vol. 21, no. 8, pp. 9967–9973, Apr. 2013.
[2.20] J.-W. Shi, J.-M.Wun, F.-W. Lin, and J. E. Bowers, “Ultra-fast (325 GHz) near-ballistic uni-traveling-carrier photodiodes with high sub-THz output power under a 50 load,” in Proc. IEEE Photon. Soc. Meeting, Bellevue, WA, USA, Sep. 2013, pp. 354–355, paper WA2.3.
[2.21] M. Y. Frankel, S. Gupta, J. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 39, no. 6, pp. 910–916, Jun. 1991.
[2.22] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip-chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.
In this chapter, we demonstrated two novel collector design to further improve the high-power performance of the UTC-PD. Detailed dynamic analysis of the device package at different photocurrents and reverse bias voltages suggests that non-equilibrium electron transport plays an important role in determining the maximum output power in the THz regime. In our summy, for new structure N-UTC-PD, it still has superiorly high bandwidth (~315GHz) performance, but the new structure also leads to degradation of output power(-3dBm@280GHz); for NBUTC-PD, it has better output power (-1.8dBm) and bandwidth (~325GHz), but it must need better heat dissipation to avoid thermal failure.
References
[3.1] X. Li, S. Demiguel, N. Li, J. C. Campbell, D. L. Tulchinsky, and K. J. Williams, “Backside illuminated high saturation current partially depleted absorber,” Electron. Lett., vol. 39, pp. 1466–1467, 2003.
[3.2] J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “Highspeed, high-responsivity, and high- power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Tech. Lett., vol. 17, no. 9, pp. 1929–31, Sep. 2005.
[3.3] A. Dyson, I. D. Henning, and M. J. Adams, “Comparison of type I and type II heterojunction unitravelling carrier photodiodes for terahertz generation,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 2, pp. 277–283, Mar./Apr. 2008.
[3.4] I. D. Henning, M. J. Adams, Y. Sun, D. G. Moodie, D. C. Rogers, P. J. Cannard, S. “Jeevan” Dosanjh, M. Skuse, and R. J. Firth, “Broadband antenna-integrated, edge-coupled photomixers for tuneable terahertz sources,” IEEE J. Quantum Electron., vol. 46, no. 10, pp. 1498–1505, Oct. 2010.
[3.5] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Exp., vol. 18, pp. 11105–11110, 2010.
[3.6] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 509– 517, Mar. 2012.
[3.7] M. J. Fice, E. Rouvalis, L. Ponnampalam, C. C. Renaud, and A. J. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett., vol. 460, pp. 28–31, 2010.
[3.8] A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Akalin, J. F. Lampin, F. Mollot, F. Hindle, C. Yangand, and G. Mouret, “High-efficiency unitravelling-carrier photomixer at 1.55 μm and spectroscopy application up to 1.4 THz,” Electron. Lett., vol. 44, no. 22, pp. 1320–1321, 2008.
[3.9] J.-W. Shi, F.-M. Kuo, and M.-Z. Chou, “A linear cascade near-ballistic uni-traveling-carrier photodiodes with extremely high saturation-current bandwidth product (6825mA-GHz, 75mA/91GHz) under a 50Ω Load,” in Proc. Opt. Fiber Commun. Collocated Nat. Fiber Opt. Eng. Conf. , 2010, pp. 1–3.
[3.10] A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Highpower and broadband sub-terahertz wave generation using a j-band photomixer module with rectangular-waveguide output port,” in Proc. 33rd Int. Conf. Millimeter Terahertz Waves, Pasadena, CA, USA, Sep. 2008, pp. 1–2.
[3.11] T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in Proc. Tech. Dig. IEEE Int. Topical Meeting Microw. Photon., 2009, pp. 1–4.
[3.12] J.-W. Shi, F.-M.Kuo, C.-J.Wu, C. L. Chang, C.Y. Liu, C.-Y.Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron., vol. 46, no. 1, pp. 80–86, Jan. 2010.
[3.13] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012.
[3.14] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.
[3.15] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
[3.16] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters. Singapore: World Scientific, 1996.
[3.17] J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160 GHz signal generation by using ultra-fast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3803507, Nov./Dec. 2014.
[3.18] T. Ishibashi,Y. Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3804210, Nov./Dec. 2014.
[3.19] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high performance near-ballistic uni-traveling-carrier photodiode at a 1.55 μm wavelength,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 938–940, Apr. 2006.
[3.20] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001.
[3.21] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no.4, pp. 1725–1731, Apr. 2006.
[3.22] H. Ito, T. Furuta, F. Nakajima, K.Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightw. Technol., vol. 23, no. 12, pp. 4016–4021, Dec. 2005.
[3.23] H. Ito, S.Kodama,Y.Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004.
[3.24] M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. V. Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 318–320, Feb. 2012.
[3.25] H. Ito, T. Furuta, S. Kodama, N.Watanabe, and T. Ishibashi, “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, no. 21, pp. 1809–1810, Oct. 2000.
[3.26] G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M.Zaknoune, T. Akalin, and J.-F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 3 pp. 328–337, May, 2014.
[3.27] H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microwave. Wireless Components Lett., vol. 22, no. 7, pp. 363–365, Jul. 2012.
[4.1] F.-M.Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J., vol. 2, no. 5, pp. 719–727, Oct. 2010.
[4.2] H.-P. Chuang and C.-B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper,” Opt. Exp., vol. 18, pp. 24003–24011, 2010.
[4.3] J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160 GHz signal generation by using ultra-fast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3803507, Nov./Dec. 2014.
[4.4] J.-M. Wun, H.-Y. Liu, Y.-L. Zeng, C.-B. Huang, C.-L. Pan, and J.-W. Shi, “High-power THz-wave generation by using ultra-fast (315 GHz) uni-traveling carrier photodiode with novel collector design and photonic femtosecond pulse generator,” presented at the Optical Fiber Communications Conference. and Exhibition, Los Angeles, CA, USA, Mar. 2015, Paper M3C.6.
[4.5] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave. Technol., vol. 21, no. 10, pp. 2145–2157, Oct. 2003.
[4.6] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. of Lightw. Technol., vol. 21, pp. 2145–2153, 2003.
[4.7] Huang, C.-B. ; Shi, J.-W. ; Kuo, F.-M. ; Chuang, H.-P. ; Ci-Ling Pan, “Green and High-Power Photonic Millimeter-Wave (MMW) Generator for Remote Generation at 124-GHz”, Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, CA, USA, Mar. 2011, Paper OThG6
[4.8] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high performance near-ballistic uni-traveling-carrier photodiode at a 1.55 μm wavelength,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 938–940, Apr. 2006.
[4.9] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001.
[4.10] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no.4, pp. 1725–1731, Apr. 2006.
[4.11] C.-B. Huang and Y. Lai,“Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 167–169, Feb. 2000.
[4.12] T. Ishibashi,Y. Muramoto,T.Yoshimatsu, andH. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3804210, Nov./Dec. 2014.
[4.13] H. Ito, T. Furuta, S. Kodama, N.Watanabe, and T. Ishibashi, “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, no. 21, pp. 1809–1810, Oct. 2000.
[4.14] H. Ito, T. Furuta, F. Nakajima, K.Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightw. Technol., vol. 23, no. 12, pp. 4016–4021, Dec. 2005.
[4.15] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip-chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.
[4.16] F.-M. Kuo, C.-B. Huang, J.-W. Shi, N.-W. Chen, H.-P. Chuang, J. E. Bowers, and C.-L. Pan, “Remotely up-converted 20 Gbit/s error-free wireless on-off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photon. J., vol. 3, no. 2, pp. 209–219, Apr. 2011.
[4.17] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec error-free wireless link between ultra-fast W-band photonic transmitter-mixer and envelop detector,” Opt. Exp., vol. 20, no. 19, pp. 21223–21234, Sep. 2012.
[5.1] G. Cook, D. Pomerantz, K. Rohrbach, B. Johnson, and J. Smyth, Clicking Clean: A Guide to Building the Green Internet. Washington, DC, USA: Greenpeace Inc., 2015, ch. 1.
[5.2] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “PassiveWi-Fi: Bringing low power to Wi-Fi transmissions,” in Proc. Symp. Netw. Syst. Des. Implementation, Santa Clara, CA, USA, Mar. 2016, pp. 151–164.
[5.3] P. Moser, P.Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE, vol. 9001, pp. 900103-1–900103-8, Feb. 2014.
[5.4] M. A. Taubenblatt, “Optical Interconnects for high-performance computing,” IEEE/OSA J. Lightw. Technol., vol. 30, no. 4, pp. 448–458, Feb. 2012.
[5.5] H. Chen A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron., vol. 45, no. 12, pp. 1537–1541, Dec. 2009.
[5.6] D. M. Kuchta et al., “A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C,” IEEE/OSA J. Lightw. Technol., vol. 33, no. 4, pp. 802–810, Feb. 2015.
[5.7] T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, and T. Kawanishi, “Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Los Angeles, CA, USA, Mar. 2015, Paper M3C.7.
[5.8] H. Ito, S.Kodama,Y.Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004.
[5.9] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, pp. 3804210, Nov./Dec. 2014.
[5.10] T. Umezawa et al., “11-Gbps 16-QAM OFDM radio over fiber demonstration using 100 GHz high-efficiency photoreceiver based on photonic power supply,” in Proc. Optoelectron. Commun. Conf./Int. Conf. Photon. Switching 2016, Niigata, Japan, Jul. 2016, Paper ThD3-3.
[5.11] J.-W. Shi et al., “GaAs/In0.5 Ga0.5 P laser power converter with undercut mesa for simultaneous high-speed data detection and dc electrical power generation,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 561–563, Apr. 2012.
[5.12] J.-M. Wun, J.-W. Shi, C.-Y. Tsai, and Y.-M. Hsin, “Undercut GaAs/In0.5 Ga0.5 P high-speed laser power converter for simultaneous 10 Gbit/sec data detection and efficient dc electrical power generation,” in Proc. 2012 Int. Conf. Solid State Devices Mater., Kyoto, Japan, 2012, Paper A-6-5.
[5.13] J.-W. Shi, F.-M. Kuo, C.-S. Yang, S.-S. Lo, and C.-L. Pan, “Dynamic analysis of cascade laser power converters for simultaneous high-speed data detection and optical-to-electrical dc power generation,” IEEE Trans. Electron Device, vol. 58, no. 7, pp. 2049–2056, Jul. 2011.
[5.14] L. Zheng et al., “Demonstration of high-speed staggered lineup GaAsSb– InP unitraveling carrier photodiodes,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 651–653, Mar. 2005.
[5.15] J.-M. Wun, Y.-L. Zeng, and J.-W. Shi, “GaAs0.5 Sb0.5 /InP UTC-PD with graded-bandgap collector for zero-bias operation at sub-THz regime,” in Proc. Opt. Fiber Commun. Conf. 2016, Anaheim, CA, USA, Mar. 2016, Paper Tu2D.4.
[5.16] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016.
[5.17] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.
[5.18] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “Highspeed, high-responsivity, and high-power performance of near- ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, Sep. 2005.
[5.19] R. Sidhu et al., “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett., vol. 42, no. 3, pp. 181–182, 2006.
[5.20] J.-M. Wun, R.-L. Chao, Y.-W. Wang, Y.-H. Chen, and J.-W. Shi, “Type-II GaAs0.5Sb0.5/InP uni-traveling carrier photodiodes with sub-THz bandwidth and high-power performance under zero-bias operation,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 4, pp. 711–716, Feb. 2017.
[5.21] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016.
[5.22] Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 626–632, May 2010.
[5.23] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012.
[5.24] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, Nov./Dec. 2014, Art. no. 3804210.
[5.25] H. Ito et al., “High-speed and high-output InP-InGaAs uni-traveling carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004.
[5.26] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809–1810, Oct. 2000.
[5.27] J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightw. Technol., vol. 33, no. 4, pp. 921–927, Feb. 2015.
[5.28] J.-W. Shi and C.-W. Liu, “Design and analysis of separate-absorption transport- charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightw. Technol., vol. 22, no. 6, pp. 1583–1590, Jun. 2004.
[5.29] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
[5.30] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001.
[5.31] S. Koenig et al., “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, pp. 977–981, Dec. 2013.
[5.32] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links f or very-high data rate communication,” NPG Asia Mater., vol. 3, no. 2, pp. 41–48, Apr. 2011.
[5.33] H.-J. Song and T. Nagatsuma, “Present and future terahertz communications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256–263, Sep. 2011.
[5.34] F.-M. Kuo et al., “Remotely up-converted 20 Gbit/s error-free wireless on off- keying data transmission atW-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photon. J., vol. 3, no. 2, pp. 209–219, Apr. 2011.
[5.35] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 4, pp. 1725–1731, Apr. 2006.
[5.36] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec error-freewireless link between Ultra-Fast W-Band photonic transmitter-mixer and envelop detector,” Opt. Express, vol. 20, no. 19, pp. 21223–21234, Sep. 2012.
[6.1] A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and Broadband Sub-Terahertz Wave Generation Using a J-band Photomixer Module with Rectangular-waveguide Output Port,” Tech. Dig. 2008 Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), pp. M4K2 1199, Sep., 2008.
[6.2] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-Carrier Photodiodes for Terahertz Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 20, pp. 3804210, Nov./Dec., 2014.
[6.3] C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. V. Dijk, and A. J. Seeds “Antenna Integrated THz Uni-Traveling Carrier Photodiodes,” to be published in IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, March, /April, 2018.
[6.4] H. Ito and T. Ishibashi, “Photonic Terahertz-Wave Generation Using Slot-Antenna-Integrated Uni-Traveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 23, pp. 3800907, July/August, 2017.
[6.5] J. Wells, “Faster Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine. vol. 10, pp. 104-112, May, 2009.
[6.6] J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-Fast Uni-Traveling Carrier Photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As Type-II Hybrid Absorbers for High-Power Operation at THz Frequencies,” to be published in IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, March, /April, 2018.
[6.7] V. Rodriguez, “The dual-ridged horn antenna,” EE, Evaluation engineering vol. 45, no. 10, pp. 58-63, Oct., 2006.
[6.8] ANSYS HFSS:3D full-wave electromagnetic field simulation, ANSYS, Inc.
[6.9] Keysight ADS, Keysight Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799.′
[6.10] N.-W. Chen, H.-J. Tsai, F.-M. Kuo, and J.-W. Shi, “High-Speed W-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications,” IEEE Trans. Microwave Theory Tech., vol. 59, No. 4, pp. 978-986, April, 2011.
[6.11] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec Error-Free Wireless Link between Ultra-Fast W-Band Photonic Transmitter-Mixer and Envelop Detector,” Optics Express, vol. 20, No. 19, pp. 21223-21234, Sep., 2012.
[6.12] D. M. Pozar, Microwave Engineering, 4th ed. New York: Wiley, 2011.
[6.13] K.C. Gupta, R. Garg, I. Bahl,R.Bhartia, MicrostripLines and Slotlines, Artech House, Inc., Norwood, MA, 1996.
[6.14] G. Mattaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks, and coupling structures, Artech House, Norwood, MA, 1980.
[6.15] Y. Peng, X.-F. Zang, Y.-M. Zhu, C. Shi, L. Chen, B. Cai, and S.-L. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a doublelayered grating structure,” Optics Express, vol. 23, No. 03, pp. 2032-2039, Feb., 2015.
[6.16] X.- F. Zang, C. Shi, L. Chen, B. Cai, Y.-M. Zhu, and S.-L. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Scientific Reports, vol. 5, pp. 8901, March, 2015.

[6.17] C. Shi, X.-F. Zang, L. Chen, Y. Peng, B. Cai, G. R. Nash, and Y.-M. Zhu, “Compact Broadband Terahertz Perfect Absorber Based on Multi-Interference and Diffraction Effects,” IEEE Trans. Terahertz Science Tech., vol. 6, pp. 40-44, Jan., 2016.
[6.18] S. Kawanishi, and M. Saruwatari, “A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection,” IEEE Trans. Instrumentation and Measurement, vol. 38, pp.569 - 573, April, 1989.
[6.19] Y.-Y. Hu, “A Method of Determining Phase Centers and Its Applications to Electromagnetic Horns,” Journal of the Franklin Institute, vol. 271, pp. 31–39, Jan. 1961.
[6.20] J. Zehentner, J. Machac, and J. Mrkvica, “Modes on standard and inverted conductor-backed slotline,” 2003 IEEE IMS Symposium, June 8-13, pp.1-4.
[6.21] R. King and D. D. King, “Microwave Impedance Measurements with Application to Antennas. II,” Journal of Applied Physics, vol. 16, pp. 445-453, 1945.
[7.1] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon., vol. 4, pp. 495–497, Aug. 2010.
[7.2] A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE, vol. 8353, p. 83533D, May 2012.
[7.3] J. E. Bowers, A. K. Srivastava, C. A. Burrus, M. A. DeWinter, M. A. Pollack, and J. L. Zyskind, “High-speed GaInAsSb/GaSb PIN photodetectors for wavelengths to 2.3 μm,” Electron. Lett., vol. 22, pp. 137–138, Jan. 1986.
[7.4] N. Ye et al., “InGaAs surface normal photodiode for 2 m optical communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 14, pp. 1469–1472, Jul. 15, 2015.
[7.5] Y. Miyamoto, M. Yoneyama, K. Hagimoto, T. Ishibashi, and N. Shimizu, “40 Gbit/s high sensitivity optical receiver with uni-travelling-carrier photodiode acting as decision IC driver,” Electron. Lett., vol. 34, no. 2, pp. 214–215, Jan. 1998.
[7.6] A. Rakovska et al., “Room temperature InAsSb photovoltaic mid-infrared detector,” Appl. Phys. Lett., vol. 77, no. 3, pp. 397–399, Jul. 2000.
[7.7] M. P. Mikhailova, Handbook Series on Semiconductor Parameters, vol. 1, M. Levinshtein, S. Rumyantsev, and M. Shur, Eds. London, U.K.: World Scientific, 1996, pp. 147–168.
[7.8] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明