博碩士論文 100521051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.238.199.4
姓名 魏志叡(Zhi-Rui Wei)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們將展示垂直共振腔面射型雷射應用於短距離至中距離(2km)於850nm波段具有高度單模輸出、高輸出光功率其細節結構設計。若要進一步的提高資料量與距離乘積比,其高速的提高調製速度與減小動態調製下頻譜半高寬,藉此減少色散是非常重要的。而要製作出單一模態輸出的VCSELs最直接的方式就是將其水氧化孔徑縮小至2µm,但這樣的方式會造成極高的微分電阻(differential resistance)、低輸出光功率( <~2mW)及可靠度方面的問題。輸出光功率是相對重要的,850nm波段在標準光纖內每公里衰減3.5dB的明顯傳輸損耗。不過我們藉由氧化層掏離(Oxide Relief)孔徑和鋅擴散孔徑之前相對大小的最佳化,不需將氧化孔徑微縮至很小,不但能達到高輸出光功率( >6mW)、高單模態輸出, 且達到一個合理的臨限電流(threshold current)( ~1.5mA)。此外我們的方式可以大大降低普遍發生在單模輸出雷射的低頻滾落現象,使最大數據傳輸速率達到26Gbit/sec,且利用OM4-MMF之光纖的傳輸距離達到2 km ,得到一高資料量與距離乘積比為28Gbit km/s (14Gbit/s x 2 km)。
摘要(英) We demonstrate the detail design consideration and fabrication of a highly single-mode, high-power, and high-speed vertical-cavity surface-emitting lasers (VCSELs) at 850 nm for the application of short to medium reach (~2 km) optical interconnect.
Reducing the dynamic linewidth of VCSELs under high-speed modulation is essential to minimize the chromatic dispersion and further improve the bit-rate distance product in transmission. Among the reported (quasi) single-mode VCSELs technique, downscaling the size of oxide aperture (~2 um) of VCSELs is one of the most straightforward ways.
However, such miniaturized oxide-apertures VCSELs would have a large differential resistance, reliability issues, and a limited maximum single-mode output power (< ~2 mW), which plays an important role in determining the maximum linking distance of fiber with a significant propagation loss at 850 nm wavelength (~3.5 dB/km).
Here, by optimizing the relative geometric sizes between the oxide-relief and Zn-diffusion apertures in our demonstrated 850 nm VCSELs, we can not only attain highly single-mode output power (~6 mW) but also sustain the large size of oxide aperture (~9 um) with a reasonable threshold current (~1.5 mA).
Furthermore, due to the optimizing of dimension of optical cavity, the spatial hole burning effect induced low-frequency roll-off can be minimized in our proposed structure with a maximum data rate up to 26 Gbit/sec.
Record-high bit rate-distance products for OM4 MMF transmission under on-off keying (14 Gbit/sec 2.2 km) modulation formats have been successful demonstrated by use of our VCSEL.
關鍵字(中) ★ 面射型雷射
★ 單模態
關鍵字(英)
論文目次 摘 要 i
Abstract ii
致謝 iii
目 錄 iv
圖目錄 v
表目錄 viiii
第一章 序論 1
1-1 簡介 1
1-2 光連結應用 1
1-3 面射型雷射簡介 7
第二章 理 論 9
2-1 VCSEL的磊晶結構 9
2-2 鋅擴散於DBR 12
2-3 VCSEL的選擇性水氧化理論 16
2-4 水氧層掀離製作 18
2-5 高速單模態VCSEL製作 19
2-6 發散角 24
第三章 實 驗 26
3-1 鋅擴散製程 26
3-2 水氣氧化 28
3-3 製作電極(P-metal 和N-metal) 32
3-4 金屬回火(Annealing)和平坦化 34
第四章 量測結果與討論 37
4-1量測系統 37
4-1-1. 電流對電壓(I-V)的量測 37
4-1-2. 光功率對電流(L-I)之量測 37
4-1-3. 遠場(Far field)之量測系統 38
4-1-4. 遠場(Far field)投影之量測系統 38
4-1-5. 頻譜(Spectrum) 之量測系統 39
4-1-6. 頻寬(Bandwidth)之量測系統 39
4-1-7. 眼圖(Eye pattern)之量測系統 40
4-2 掀離式水氧層合併鋅擴散型VCSEL量測結果 42
4-2-1. VCSEL元件結構圖 42
4-2-2. 電流對電壓(I-V)及輸出光功率對電流 (L-I)曲線 44
4-2-3. 光頻譜(Optical spectra)圖 47
4-2-5. 遠場(Far field)發散角(Divergence angle) 48
4-2-6. 遠場 (Far field) 投影 50
4-2-7. 頻寬(Bandwidth) 51
4-2-7. 大訊號眼圖 (eye pattern) 量測 55
4-2-8. Benchmark 59
第五章 結論與未來研究 60
Reference 61
參考文獻 [1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber”, Elec. Lett. 13th, vol. 26 No.19,(1990)
[5] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser”, Soc. Photo-opt Instrun. Eng.,vol. 1418, pp.414-421,(1991).
[6] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser”, Appl. Phys. Lett., 58, pp.1780-1782(1991).
[7] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.” J. Appl. Phys. ,73, pp3769-3781 (1993).
[8] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607(1984).
[9] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776,(1981).
[10] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, (1989).
[11] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年)
[12] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[13] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, (1985).
[14]C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[15] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., vol. 36, p. 3770, (1965).
[16] M. Ochiai et al., Appl. Phys. Lett., 68, 1898(1996)][J. H. Kim , Appl. Phys. Lett. ,69, 3357(1996).
[17] Kent D. Choquette, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys” ,IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, June 1997.
[18] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, (1995).
[19] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 (1993).
[20] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 (1996).
[21] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742,(1996).
[22] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, (1995).
[23] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[24] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[25] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234, 1990.
[26] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2,Feb. 2004.
[27] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[28] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 2004.
[29] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep. 2001.
[30] Meng Peun Tan,1 James A. Lott,’’ 25 Gb/s Transmission over 1-km OM4 Multimode Fiber Using a Single Mode Photonic Crystal VCSEL’’ CLEO:2013 Technical Digest © OSA 2013.
[31] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan. 2003.
[32] Hermann A. Haus,”Waves and Fields in Optoelectronics”(1984).
[33] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon.
[34] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, 1810-1824,(1997).
[35] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007
[36] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley October 1995.
[37] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[38] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, Sep., 2012.
[39] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, W. Hofmann, and D. Bimberg, “99 fJ/(bit.km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 19-21, Jan., 2012.
[40] G. Giaretta, R. Michalzik, A. J. Ritger, “Long distance (2.8 km), short wavelength (0.85 m) data transmission at 10 Gb/sec over new generation high bandwidth multimode fiber,” Conference on Lasers and Electro-Optics, (CLEO/QELS’00) OSA Technical Digest, San Francisco, CA, USA, May, 2000, pp. 683-684.
[41] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 717–719, May, 2002.
[42] M. P. Tan, J. A. Lott, S. T. M. Fryslie, N. N. Ledentsov, Dieter Bimberg, and K. D. Choquette “25 Gb/s Transmission over 1-km OM4 Multimode Fiber Using a Single Mode Photonic Crystal VCSEL,” Conference on Lasers and Electro-Optics, (CLEO/QELS’13) OSA Technical Digest, San Jose, CA, USA, June, 2013, pp. CTu3L.3.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2013-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明