博碩士論文 100521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.141.199.243
姓名 楊竣傑(Chun-Chieh Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具高電流與快速逆向回復時間之氮化鎵蕭基二極體製作與研究
(Fabrication of GaN Schottky Diodes with High Current and Fast Recovery Time)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 節能工程是目前全球工業發展的訴求,為此使用氮化鎵材料取代傳統矽基材,以製作具有大崩潰電壓、大電流傳導以及快速切換特性的蕭基二極體,預期可降低電源供應器、電動車以及功率因子校正器之功率損耗。本研究使用成長於藍寶石基板上之氮化鋁鎵/氮化鎵異質接面與高阻值緩衝層磊晶結構,以指叉型並聯元件設計,成功地降低蕭基二極體的串聯阻值,實現1.5 V下9.5 A的大電流特性。為了進一步降低蕭基二極體的順向導通電壓。本研究亦開發了陽極蝕刻製程技術並探討不同蝕刻深度對元件特性的影響,其中陽極蝕刻深度超過二維電子氣的元件,在經過製程的調整改善後,可成功將理想因子從2.94降至1.82,並將元件導通電壓由1.2 V降低至0.5 V。利用此製程條件,可在6吋矽基板上製作出導通電壓為0.5 V,與1.5 V下順偏電流為4.3 A的大電流元件,其單根指叉元件的崩潰電壓可達424 V。
此外,利用總長40 mm的元件,在相同元件面積且不影響直流特性下,本研究設計不同的陽極型態以探討蕭基接面對電容及逆向回復特性的影響,成功地藉由陽極蝕刻的方式,降低元件逆向回復時間至25 ns,比起無蝕刻的蕭基二極體,降低達19.4 %,減少逆向回復電荷多達24 %。
摘要(英) Recently, energy saving has become increasingly important in worldwide industrial development. GaN-based Schottky barrier diodes (SBDs) with high breakdown voltage, high current conduction and highly efficient switching characteristics have been proposed to be a promising electronic component for energy-efficient power supplies, electric vehicles and power factor correction circuits, compared to the traditional Silicon devices. In this study, AlGaN/GaN heterostructures with a highly resistive buffer layer on sapphire substrates are used to develop multi-finger devices for high current operation. GaN SBDs with forward current as high as 9.5 A @ 1.5 V have been successfully demonstrated on devices with 320 mm-long finger. To further reduce the turn on voltage of SBDs, an anode recess technology is developed and used to explore the characteristics of devices with different recessed depth. The ideality factor of SBDs with an etch depth that passes the position of the two dimensional electron gas (2DEG) is reduced from 2.94 to 1.82 by process modification. The turn on voltage has also been reduced from 1.2 V of the non-recessed SBDs to 0.5 V of the SBDs with an etch depth passing the 2DEG. Thus, 100 mm SBDs with high current conduction of 4.3 A @ 1.5 V have been demonstrated on 6 inch silicon substrates successfully. Breakdown voltage of 424 V for the single finger SBDs with anode width of 1 mm has also be achieved.
In addition, SBDs with 40 mm-long fingers are prepared to study the junction capacitance and reverse recovery time of devices with different anode geometry. Reverse recovery time of 25 ns is obtained by using the anode recess technique. Comparing with SBDs without anode recess, the recovery time is reduced by 19.4 % and the recovery stored charge is also reduced by 24 %.
關鍵字(中) ★ 氮化鎵
★ 蕭基二極體
★ 逆向回復特性
★ 導通電壓
關鍵字(英) ★ GaN
★ Schottky diode
★ recovery time
★ turn on voltage
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.1.1 氮化鎵功率元件之應用及優勢 1
1.1.2 氮化鎵材料特性 3
1.2 研究動機 7
1.2.1 大電流氮化鎵蕭基二極體元件之簡介與發展 7
1.3 論文架構 10
第二章 大電流氮化鎵蕭基二極體元件製作與電性分析 11
2.1 前言 11
2.2 大電流氮化鎵蕭基二極體製作與面臨之瓶頸 11
2.2.1 氮化鎵蕭基二極體之製作流程 11
2.2.2 大電流氮化鎵蕭基二極體之挑戰 14
2.3 大電流氮化鎵蕭基二極體元件製作流程調整 18
2.3.1 大電流蕭基二極體打線測試 18
2.3.2 大電流蕭基二極體光罩設計 19
2.4 大電流氮化鎵蕭基二極體電流-電壓特性分析 21
2.5 本章總結 27
第三章 氮化鎵陽極蝕刻蕭基二極體元件之製作與電性分析 28
3.1 前言 28
3.2 陽極蝕刻蕭基二極體元件製作流程 28
3.3 不同陽極蝕刻深度之蕭基二極體電流-電壓分析比較 33
3.4 陽極蝕刻修補條件對蕭極二極體元件之影響 41
3.5 本章總結 50
第四章 氮化鎵蕭基二極體動態特性分析比較 51
4.1 二極體逆向回復特性量測介紹 51
4.2 蕭基接面之結構對電流-電壓特性分析比較 55
4.3 蕭基接面之結構對電容-電壓特性分析比較 60
4.4 蕭基接面之結構對逆向回復特性分析比較 66
4.5 本章總結 69
第五章 結論與未來展望 70
參考文獻 72
參考文獻 [1] P. Ramesh, S. Krishnamoorthy, S. Rajan, and G. N. Washington, "Fabrication and characterization of a piezoelectric gallium nitride switch for optical MEMS applications," Smart Materials and Structures, vol. 21, p. 094003, 2012.
[2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, Jan 1 2000.
[3] S. Yoshida, J. Li, N. Ikeda, and K. Hataya, "AlGaN/GaN field effect Schottky barrier diode (FESBD)," physica status solidi (c), vol. 2, pp. 2602-2606, 2005.
[4] Daisuke Shibata et al., "GaN-based multi-junction diode with low reverse leakage current using P-type barrier controlling layer," presented at the IEDM, Washington, DC, 2011.
[5] J.-H. Lee, J.-H. Jeong, and J.-H. Lee, "Enhanced Electrical Characteristics of AlGaN-Based SBD With In Situ Deposited Silicon Carbon Nitride Cap Layer," IEEE Electron Device Letters, vol. 33, pp. 492-494, 2012.
[6] E. Bahat-Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Wurfl, and G. Trankle, "Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking," IEEE Electron Device Letters, vol. 33, pp. 357-359, 2012.
[7] J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo, and H.-Y. Cha, "Low Turn-On Voltage AlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode," IEEE Electron Device Letters, vol. 34, pp. 214-216, 2013.
[8] P. Waltereit, S. Müller, K. Bellmann, C. Buchheim, R. Goldhahn, K. Köhler, L. Kirste, M. Baeumler, M. Dammann, W. Bronner, R. Quay, and O. Ambacher, "Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures," Journal of Applied Physics, vol. 106, p. 023535, 2009.
[9] H. Kim, "Reactive ion etching damage in n-GaN and its recovery by post-etch treatment," Electronics Letters, vol. 44, p. 1037, 2008.
[10] Young-Hwan Choi et al., "High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition Si0 2 Passivation," presented at the Power Electronics, 2007. ICPE ’07. 7th Internatonal Conference, Daegu, 2007.
[11] W. H. Lan, K. C. Huang, and K. F. Huang, "Surface KOH treatment in AlGaN-based photodiodes," Electronics Letters, vol. 42, p. 821, 2006.
[12] Isaac Cohen et al., "Novel 600 V GaN Schottky diode delivering SiC performance at Si prices," presented at the APEC, Austin, TX, 2005.
[13] Seung-Chul Lee et al., "High Breakdown Voltage GaN Schottky Barrier Diode employing Floating Metal Rings on AlGaN/GaN Hetero-junction " presented at the Proceedings of the 17th International Symposium on Power Semiconductor Devices & IC’s Santa Barbara, CA, 2005.
[14] Y. Zhou, M. Li, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, "Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery," Applied Physics Letters, vol. 88, p. 113509, 2006.
[15] G.-Y. Lee, H.-H. Liu, and J.-I. Chyi, "High-Performance AlGaN/GaN Schottky Diodes With an AlGaN/AlN Buffer Layer," IEEE Electron Device Letters, vol. 32, pp. 1519-1521, 2011.
[16] J. W. Johnson, A. P. Zhang, L. Wen-Ben, R. Fan, S. J. Pearton, S. S. Park, Y. J. Park, and C. Jenn-Inn, "Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers," IEEE Transactions on Electron Devices, vol. 49, pp. 32-36, 2002.
[17] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, "High voltage GaN Schottky rectifiers," IEEE Transactions on Electron Devices, vol. 47, pp. 692-696, 2000.
[18] Seung-Chul Lee et al., "A new vertical GaN Schottky barrier diode with floating metal ring for high breakdown voltage," in Power Semiconductor Devices and ICs, 24-27 May 2004, pp. 319 - 322.
[19] Y.-M. Hsin, T.-Y. Ke, G.-Y. Lee, J.-I. Chyi, and H.-C. Chiu, "A 600 V AlGaN/GaN Schottky barrier diode on silicon substrate with fast reverse recovery time," physica status solidi (c), vol. 9, pp. 949-952, 2012.
[20] L. Shenghui, D. Jiangfeng, L. Qian, Y. Qi, Z. Wei, X. Jianxin, and Y. Mohua, "Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer," Journal of Semiconductors, vol. 31, p. 094004, 2010.
[21] Y. Irokawa, B. Luo, J. Kim, J. R. LaRoche, F. Ren, K. H. Baik, S. J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, S. S. Park, and Y. J. Park, "Current–voltage and reverse recovery characteristics of bulk GaN p-i-n rectifiers," Applied Physics Letters, vol. 83, p. 2271, 2003.
[22] B. S. Kang, F. Ren, Y. Irokawa, K. W. Baik, S. J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, H. J. Ko, and H. Y. Lee, "Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 710, 2004.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2013-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明