博碩士論文 100521063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.204.56.97
姓名 鄭穎鴻(Ying-hing Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
(High-Speed, High-Efficiency, and Large-Area p-i-n Photodiode for the Applications of Optical Interconnect from 0.85 to 1.55 um Wavelengths)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 對於操作在大於25 Gbit/sec光波長範圍從0.85 μm到1.55 μm,我們提出新型有大主動區直徑的InP(磷化銦)光偵測器結構。在結構中0.85μm激發波長下,因為In0.53Ga0.47As有大的吸收常數(3 "μm-1" ),故P型In0.53Ga0.47As作為吸收層其且慢的電洞傳輸會被消除,由於RC限制頻寬和載子傳輸時間之間取得平衡,故(~4 μm)厚度In0.53Ga0.47As有著完美電子傳輸特性。此外,為了讓最上層P型In0.53Ga0.47As吸收層最大限度地減少嚴重的表面複合,故再P型In0.53Ga0.47As吸收層上加上一層P型In0.52AlxGa0.48-xAs漸變式摻雜層,漸變式摻雜層不僅能均勻吸收光,而且可以加快電子擴散。分別操作在波長0.85 μm到1.55 μm,偏壓-1V下,此元件實現了高速(14 和 22 GHz)和高響應度(0.25 和 0.9 A/W)。在兩個波長下,已證實資料傳輸高達30 Gbit/sec且清楚的看到眼圖(無誤碼)。
摘要(英) We demonstrate a novel InP based photodiodes structure with large active diameters (55 "μ" m) for > 25 Gbit/sec operations at the optical wavelengths which range from 0.85 to 1.55 μm. By utilizing the large absorption constant (>3 "μ" m-1) of In0.53Ga0.47As based p-type absorption layer under 0.85 μm wavelength excitation, the slow hole transport can be eliminated in our structure and the trade-off between RC-limited bandwidth and carrier transient time can be greatly released due to the excellent characteristics of electron transport in the intrinsic and thick In0.53Ga0.47As layer (~4 μm). Furthermore, in order to minimize the serious surface (absorption) recombination in the top p-type In0.53Ga0.47As absorption layer, an additional p-type In0.52AlxGa0.48-xAs graded bandgap layer (GBL) is grown above it. Such GBL can not only uniform the profile of photo-absorption but also accelerate the electron diffusion process. Under -1 V bias, these devices can achieve high-speed (14 and 22 GHz), and high responsivity (0.25 and 0.9 A/W), at 0.85 and 1.55 μm wavelength operation respectively. Clear eye-opening (error-free) with data rate up to around 30 Gbit/sec have also been demonstrated in both wavelengths.
關鍵字(中) ★ 高速
★ 大面積
★ 光偵測器
關鍵字(英) ★ high speed
★ large area
★ photodiode
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vi
表目錄 x
第一章 序論 1
1-1 多媒體時代 1
1-2 光連結應用 1
1-3 同質接面之磷化銦光偵測器原理 11
1-4 設計大主動區直徑的同質接面之磷化銦光偵測器 18
1-5 論文動機 22
第二章 高速光偵測器的設計原理及製作 25
2-1 元件磊晶結構設計 25
2-2 高速光偵測器之模擬與分析 28
2-3 元件製作步驟 32
第三章 實驗與量測分析 44
3-1 實驗系統架設 44
3-2 量測結果與數據分析 47
第四章 結論與未來展望 62
參考文獻 63
參考文獻 [1]C. L. Schow, F. E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, R. Horton, J.
Knickerbocker, and J. Kash “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2]N. Savage, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3]S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[4]Donald A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition
[5]Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004
[6]J.-W. Shi, F.-M. Kuo, Chan-Shan Yang, S.-S. Lo, and Ci-Ling Pan, “Dynamic Analysis of Cascade Laser Power Converters for Simultaneous High-Speed Data Detection and Optical-to-Electrical dc Power Generation,” IEEE Trans. on Electron Device. vol. 58, pp. 2049-2056, July, 2011.
[7]X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams,“A
comparison of front and backside-illuminated high-saturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec.,vol. 40,no. 9, pp.
[8]M. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” IEEE/OSA Journal of Lightwave Technology, vol. 30, No. 4, pp. 448-458, Feb., 2012.
[9]D. Bimberg, “Green Data and Computer Communication,” IEEE Photonic Society Meeting 2011, Arlington, VA, USA, Oct., 2011, pp. TuN3.
[10]K. Kurata, “High-Speed Optical Transceiver and Systems for Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OThS3.
[11]J. A. Lott, A. S. Payusov, S. A. Blokhin, P. Moser, N. N. Ledentsov, and D. Bimberg, “Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/sec optical interconnects,” Phys. Status Solidi (C) 9, no. 2, pp. 290-293, Feb., 2012.
[12]N. Y. Li, C. L. Schow, D. M. Kuchta, F. E. Doany, B. G. Lee, W. Luo, C. Xie, X. Sun, K. P. Jackson, and C. Lei, “High-Performance 850 nm VCSEL and Photodetector Arrays for 25 Gb/s Parallel Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OTuP2.
[13]W. Kobayashi, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “40-Gbps Direct Modulation of 1.3-m InGaAlAs DFB Laser in Compact To-CAN Package,” Proc. OFC 2011, Los Angele, CA, USA, March, 2011, pp. OWD2.
[14]E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nature Photonics, vol. 3, pp. 27-29, Jan., 2009.
[15]Y. Lee, D. Kawamura, T. Takai, K. Kogo, K. Adachi, T. Sugawara, N. Chujo, Y. Matsuoka, S. Hamamura, K. Yamazaki, Y. Ishigami, T. Takemoto, F. Yuki, H. Yamashita, and S. Tsuji, “25-Gb/s 100-m MMF Transmission Using a Prototype 1.3-m-Range CMOS-Based Transceiver for Optical Interconnections,” IEEE Photon. Technol. Lett., vol. 24, pp. 467-469, March, 2012.
[16]A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. De Dobbelaere, “A CMOS photonics platform for High-Speed Optical Interconnects,” IEEE Photonic Society Meeting 2012, San Francisco, CA, USA, Sep., 2012, pp. TuQ2.
[17]Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, and C. L. Ho, “10-Gbps InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response,” IEEE Photon. Technol. Lett., vol. 19, pp. 339-341, May, 2007.
[18]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp.2326-2328, Oct., 2004.
[19]J.-W. Shi and C.-W. Liu, "Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors " IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[20]K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[21]M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996.
[22]Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006.
[23]J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, pp. 533-535, April, 2012
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2013-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明