博碩士論文 100521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.233.242.204
姓名 楊彥明( yan-Ming Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用TMS320C6713 開發可自動匹配之雙麥克風除噪系統
(Development of an automatic matching dual-microphone noise reduction system utilizing TMS320C6713)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 口腔磁振影像舌頭構造之自動分割
★ 微波輸出窗電性匹配之研究★ 以軟體為基準的助聽器模擬平台之發展-噪音消除
★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響
★ 用類神經網路研究中文語音聲調產生之神經關聯性★ 教學用電腦模擬生理系統之建構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去的研究顯示適應性方向性麥克風策略具有低運算量以及高除噪的特性,可以根據噪音位置的變動適應性地改變系統的指向性達到除噪的效果,不過當雙麥克風之間不匹配時,所接收進來的訊號必然會有相位或大小的差異,若未處理雙麥克風在匹配上的問題,將會降低除的噪效果。
本研究目的是在可自動情境分類之雙麥克風除噪系統的適應性方向性麥克風策略中加入自動匹配系統,讓此除噪系統不會因為雙麥克風之間不匹配的問題,使除噪效能大大的降低。本研究先使用MATLAB(The MathWorks, Natick, Massachusetts, USA)軟體中的Simulink模擬軟體模擬雙麥克風在各種不匹配的狀況下,對於心型指向性產生的影響;並藉由本研究所發展的自動匹配演算法,在各種不匹配的狀況下能自動補償使得心型指向性成功的修正為理想的情況。接著將自動匹配演算法實現在TMS320C6713開發板(Texas Instruments, Dallas, Texas, USA)上,並與未匹配前的除噪系統進行比較。主觀評量方面經由HINT Pro聽力檢查儀(Bio-logic, Chicago, IL, USA)對八位受測者在不同的噪音環境下進行語音接收閾值(speech reception threshold, SRT)的測試,實驗結果顯示加入自動匹配後的除噪系統經由自動情境分類控制後,使得SRT改善能夠有明顯提升的效果,而且比未加入自動匹配前的除噪系統有比較好的語音理解度結果。
語音品質的評估方面使用語音品質客觀評量(perceptual evaluation of speech quality, PESQ)作為指標,實驗結果顯示,在訊噪比(signal-to-noise ratio, SNR)超過15dB以上時,加入自動匹配的麥克風系統比未加入時獲得更好的語音品質,自動情境分類系統控制除噪策略開啟的PESQ指標有更低的失真影響。而在15dB以下時,加入自動匹配後的麥克風系統能夠準確地辨別噪音並降低自動情境分類系統造成的語音失真。由以上實驗結果驗證加入自動匹配系統能夠有效的提升語音理解度,並使得自動情境分類的結果更為準確。
摘要(英) Previously studies indicated that the adaptive directional microphone strategy has the characteristics of low computing cost and effective noise reduction. By tracking the noise source, this strategy could adaptively change the directivity of the directional dual-microphone to reduce the noise. However, when the two microphones were mismatched, the received signals showed differences on their phases and amplitudes. These differences would decrease the noise reduction performance if this mismatch was not well compensated.
The purpose of this study was to add an auto-matching process that matched the dual-microphones to improve the performance of automatic scene classification noise reduction system before the application of the adaptive directional microphone strategy. In this study, we first used Simulink (The MathWorks, Natick, Massachusetts, USA) to simulate the differences in polar directivity of cardioid were resulted from the varied conditions of microphone mismatch, and the auto-matching algorithms compensated the mismatch to achieve the ideal polar directivity of cardioid. Then, the auto-matching algorithms were implemented in TMS320C6713 DSP Starter Kit (Texas Instruments, Dallas, Texas, USA) and compared with the mismatched dual-microphone in the original noise reduction system. The speech reception thresholds (SRTs) from eight normal hearing subjects in different noise conditions were measured with the HINT Pro system (Bio-logic, Chicago, IL, USA) for subjective evaluation. The experimental results showed that the automatic scene classification noise reduction system provided significantly SRT effect and had better speech intelligibility.
The perceptual evaluation of speech quality (PESQ) was further used to estimate the quality of speech. Our experimental results showed that the auto-matching dual-microphone system provide more speech quality than those of the original dual-microphone system when the signal-to-noise ratio (SNR) is above 15dB. The PESQ index indicated less distortion of original signals with the auto-matching system. When the SNR is below 15dB, the auto-matching dual-microphone system could discriminate accurately the noise type and decrease the speech distortion caused by the automatic scene classification noise reduction system. The above-mentioned experimental results suggested that auto-matching system not only improve speech intelligibility but also let automatic scene classification noise reduction system obtain more accurate results.
關鍵字(中) ★ 適應性方向性麥克風
★ 自動匹配系統
★ TMS320C6713
★ 自動情境分類
關鍵字(英) ★ adaptive directional microphone strategy
★ auto matching system
★ TMS320C6713
★ automatic scene classification
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 方向性麥克風功能及應用 3
1.3 雙麥克風自動匹配策略 7
1.4 相關研究與文獻探討 10
1.5 研究目的 17
1.6 論文內容架構 18
第二章 雙麥克風大小與相位自動匹配策略 20
2.1 適應性方向性麥克風策略 20
2.2 方向性麥克風自動大小匹配策略 22
2.3 方向性麥克風自動相位匹配策略 25
第三章 軟體模擬方法與結果比較 31
3.1 雙麥克風系統模擬 31
3.2 雙麥克風系統自動大小匹配模擬實驗 32
3.2.1 大小匹配模擬實驗一 33
3.2.2 大小匹配模擬實驗二 38
3.3 雙麥克風自動相位匹配模擬 39
3.3.1 相位匹配模擬實驗一 41
3.3.2 相位匹配模擬實驗二 44
3.4 雙麥克風自動大小及相位匹配模擬 46
3.5 大小及相位不匹配對於指向性的影響 52
第四章 硬體實現方法與結果比較 53
4.1 實驗語料與噪音 53
4.2 TMS320C6713開發板與麥克風電路 54
4.3 雙麥克風系統自動匹配實現方法與硬體實驗 57
4.3.1 雙麥克風系統匹配實現方法與硬體實驗 57
4.4 自動匹配除噪系統的實驗流程與結果討論 77
4.4.1 實驗一 77
4.4.2 實驗二 82
第五章 結論與未來展望 88
5.1 結論 88
5.2 未來展望 91
參考文獻 93
附錄 96
參考文獻 ANSI.(2007). Methods for Calculation of the Speech Intelligibility
Index. ANSI S3.5-1997.
Blamey, P. J.(2006). "Adaptive Dynamic Range Optimization for
Hearing Aids". The 9th Westem Pacific Acoustics Conference Seoul, Korea, June 26-28.
Chen, J., Phua, K., Shue, L. and Sun, H. (2009). "Performance evaluation
of adaptive dual microphone systems." Speech Communication,
51(12): 1180-1193.
Desloge, J. G., Rabinowitz, W. M. and Zurek, P. M. (1997). "Microphone
-array hearing aids with binaural output .I.Fixed-processing systems."
IEEE Transactions on Speech and Audio Processing, 5(6) : 529-542.
Edwards, B. (2000). "Beyond amplification: signal processing techniques
for improving speech intelligibility in noise with hearing aids." Seminars In Hearing, 21(2):137-156..
Elko, G. W. and Pong, A-T. N. (1995). "A simple adaptive first-order
differential microphone." IEEE Workshop on Applications of Signal Processing to Audio and Acoustics(WASPAA), New Paltz, New York, USA.
Fischer, E. and Puder, H.(2009). "Method and device for matching the
phases of microphone signals of a directional microphone of a hearing aid." US 7,587,058 B2, Sep. 8.
Gnewikow, D., Ricketts, T., Bratt, G. W., Mutchler, L. C.(2009).
"Real-world benefit from directional microphone hearing aids". Journal of Rehabilitation Research & Development, 46(5) : 603-618.
Hou, Z. (2002). "Adaptive microphone matching in multi-microphone
directional system." US 2002/0034310 A1, Mar. 21.
ITU-T (2001). Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. ITU-T P.862.
Kidmose, P. (2007). "System and method for adaptive microphone
matching in a hearing aid." US 2007/0183610 A1, Aug. 9.
Kohilakis, R. (2013). "Evalution of directional microphone drift in digital hearing aids".
[http://digitalcommons.wustl.edu/cgi/viewcontent.cgi?article=1644&context=pacs_capstones]
Ludvigsen, C., Baekgaard, L., Kuk, F. (2001). "Design Considerations in
Directional Microphones." The hearing review, 7(9):68-73.
Luo,F-L., Yang, J., Pavlovic, C., and Nehorai, A. "Adaptive
Null-Forming Scheme in Digital Hearing Aids." IEEE Transactions on signal processing, 50(7):1583-1590.
Maj, J. B., Royackers, L., Wouters, J. and Moonen, M. (2006).
"Comparison of adaptive noise reduction algorithms in dual microphone hearing aids." Speech Communication, 48:957-970.
Ricketts, T. and Henry, P. (2002). "Evaluation of an adaptive
directional-microphone hearing aid." Int J Audiol, 41(2):100-112.
Thompson, S. C.(1999). "Electrical Compensation of the microphone
sensitivities in a dual microphone directional hearing aid," J. Acoust. Soc. Am, 105.
Thompson, S. C.(2003). "Apparatus and method for matching the
response of microphones in magnitude and phase." US 6,654,468 Bl, Nov. 25.
Valente, M.(1999). "Use of microphone technology to improve user
performance in noise." Trends Amplificat, 4(3):112-135.
行政院內政部統計處網站,西元2011年資料
http://www.moi.gov.tw/stat/index.aspx
劉殿楨 (2006). 聽障患者之復健:助聽器選, Formosan J Med, 10(5):
617-622.
黃國原 (2009). 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環
境下中文語音辨識率之影響, 國立中央大學電機工程研究所. 碩
士論文.
黃銘緯 (2005). 台灣地區噪音下漢語語音聽辨測試, 國立台北護理
學院聽語障礙科學研究所. 碩士論文.
劉庭安 (2012). 運用TMS320C6713開發可自動情境分類之雙麥克風
除噪系統, 國立中央大學電機工程研究所. 碩士論文.
音賜股份有限公司:http://www.ario.com.tw
勝特力科技有限公司:http://www.100y.com.tw/product/94967.htm
苙翔科技股份有限公司:http://www.buzzer-speaker.com/manufacturer/tw/supplier/omni%20microphone.htm
指導教授 吳炤民(Chao-Min Wu) 審核日期 2014-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明