博碩士論文 100521094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.236.51.151
姓名 陳柏任(Po-jen Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多孔網印碳漿電極用於肌酐酸感測
(Porous carbon paste electrode for creatinine detection)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-1-1以後開放)
摘要(中) 肌酐酸是人類體內肌肉運動後代謝產生的最終產物,人體中每日的肌酐酸產量皆由腎臟過濾後經由尿液排出。所以在人體血液中的肌酐酸濃度是一個診斷腎小球過濾功能的一個重要指標。一般的肌酐酸感測電極是由鉑或金製作而成,這些金屬非常的昂貴,而且難以製造。本研究利用網版印刷技術搭配表面粗糙化技術,建構出一種多孔指叉碳電極,並用於肌酐酸感測。透過在網印碳漿中均勻混合碳酸鈣(CaCO3)粉末,並且以鹽酸溶解這些粉末,在電極表面製作出許多細微孔洞,增加電極的檢測表面積,並增強其量測電流響應。
本研究利用計時伏安法,量測電極的電化學響應。根據實驗結果顯示,電極在純系統溶液的肌酐酸量測中,有著廣大的線性量測區間,為0 ~ 550 μM(約0 ~ 6.2 mg/dL),R2=0.99309。涵蓋了傳統的肌酐酸網印碳電極無法檢測到的低濃度區間。電極也有3.46 μA/mM的優良靈敏度。透過表面粗糙化的方法,也使電極在純系統量測下無論在靈敏度和線性區間上,相較於傳統網印碳電極,皆有所提升。在模擬人體樣本的人類血清中,電極也在88 ~ 438 μM(1.0 ~ 4.9 mg/dL)的線性區間(R2=0.98584),靈敏度為2.78μA/mM。顯示經過表面粗糙化的電極,在血清的檢測環境下也能提升電極的檢測效能,使其線性檢測範圍能媲美先前文獻的肌酐酸鉑電極。電極同時在含有人類血液中各種干擾物質的樣本接受測試,實驗結果也顯示以計時伏安法量測的電極,受到干擾物影響造成的量測偏差皆小於5%。最後在實際的人體樣本檢驗中,和臨床的檢驗方法也有著良好的相關性,量測電流變異皆在95%的信賴區間內。中、高濃度的檢測濃度值誤差皆小於10%。透過這種電極,提高了網印碳電極在肌酐酸的感測效能,也為肌酐酸診斷提供了一個更加便宜方便的選擇。
摘要(英) Creatinine is a product of muscle metabolism. The daily produce of creatinine is filtered by kidney and excreted by urine. Creatinine level in human blood is an important indication of renal corpuscle status. Conventional creatinine sensors are made up with noble metals, such as platinum or gold, and are hard to fabricate. In this study, we develop a porous carbon-paste interdigitated electrode by screen printing technology for the measurement of creatinine. Made of carbon paste doped with CaCO3 powder and subsequently dissolved with HCl, the electrodes possessed increased surface area and enhanced current response.
In this study, we use chronoamperometry to measure the current response. By the surface roughing procedure, the linear range and sensitivity of the electrode is enhanced to be better than conventional screen-printing creatinine electrode. The creatinine sensor has a wide linear range from 0 to 550 μM (06.2 mg/dL) with R2 = 0.99309 in deionized water. It covers a lower concentration range than conventional screen printed creatinine sensors. The sensitivity is enhanced to 3.46 μA/mM.. In normal human serum sample, the creatinine sensor has wide linear range from 88 to 438 μM (1.0¬ 4.9 mg/dL) with R2 = 0.98584 and a sensitivity of 2.78 μA/mM. With the surface roughing procedure, the performance of electrode is also enhanced in normal human serum, like in DI water. This makes the linear detection range of the screen-printing carbon electrode becomes close to conventional platinum electrode. The creatinine sensor was also tested in creatinine sample with three interferences. The resultant interference current was less than 5%. In real human blood sample, the performance of the proposed creatinine sensor is highly similar to that of the Jaffe method. The difference between the measurement results of the homemade electrode and Jaffe method in middle and high concentrations are within 10%. This porous creatinine sensor outperformed conventional screen printed carbon electrodes. It provides a better choice for creatinine diagnosis.
關鍵字(中) ★ 肌酐酸
★ 生物感測器
關鍵字(英)
論文目次 中文摘要 VIII
Abstract X
致謝 XII
目錄 XIII
圖目錄 XVIII
表目錄 XXIV
第一章 緒論 1
1-1肌酐酸簡介 1
1-2腎臟簡介 2
1-2-1結構與功能 3
1-2-2慢性腎臟病 5
1-2-3肌酐酸濃度指標在腎臟病的重要性 8
1-3現今肌酐酸的臨床檢測方法 10
1-4生物感測器簡介 13
第二章文獻回顧 17
2-1肌酐酸生物感測器 17
2-1-1光學型肌酐酸生物感測器 17
2-1-2免疫型肌酐酸生物感測器 18
2-1-3電化學型肌酐酸生物感測器 20
2-1-4其他肌酐酸生物感測器 23
2-2網版印刷生物感測器 27
2-3表面粗糙化 34
2-3-1熱分解法 34
2-3-2模板輔助合成 36
2-3-3電漿蝕刻法 37
2-3-4侵蝕法 39
2-4分子固定化 41
2-4-1物理性吸附 42
2-4-2膠體包埋法 44
2-4-3共價鍵結合 46
2-4-4交聯劑連結 48
2-5電化學感測器量測方法 49
2-5-1交流阻抗法 50
2-5-2循環伏安法 52
2-5-3計時伏安法 58
第三章 研究動機與目標 60
3-1 研究動機 60
2-2 研究目標 61
第四章 材料與方法 62
4-1電極的製備 62
4-1-1電極製備的材料 62
4-1-2實驗使用儀器 62
4-1-3電極印製步驟 66
4-1-4電極檢驗步驟 69
4-2酵素的固定 70
4-2-1酵素固定的材料與儀器 70
4-2-2 PEG固定濃度最佳化 72
4-2-3固定環境溫度最佳化 74
4-2-4固定環境酸鹼值最佳化 76
4-2-5酵素的熱穩定性 78
4-3純溶液系統下的檢測 80
4-3-1純溶液系統下的肌酐酸檢測 81
4-3-2純溶液系統下的干擾物檢測 83
4-3-3純溶液系統下的計時伏安法 85
4-4人類血清下的檢測 88
4-4-1人類血清下的肌酐酸檢測 88
4-4-2人類血清下的干擾物檢測 90
4-5實際樣本的肌酐酸檢測 92
第五章 結果與討論 95
5-1電極的特性分析 95
5-1-1自製電極的電學特性分析 95
5-1-2碳漿混合攪拌時間最佳化分析 99
5-1-3電極混合碳酸鈣粉末比例最佳化分析 111
5-2酵素的固定 121
5-2-1 PEG固定濃度最佳化分析 121
5-2-2固定環境溫度最佳化分析 124
5-2-3固定環境酸鹼值最佳化分析 130
5-2-4酵素的熱穩定性分析 134
5-3純溶液系統下的檢測結果分析 137
5-3-1純溶液系統下的肌酐酸檢測結果分析 137
5-3-2純溶液系統下的干擾物檢測結果分析 139
5-3-3純溶液系統下的計時伏安法量測分析 148
5-4人類血清下的檢測結果分析 162
5-4-1人類血清下的肌酐酸檢測結果分析 162
5-4-2人類血清下的干擾物檢測結果分析 164
5-5人體樣本量測結果分析 170
第六章 結論 176
第七章 未來展望 177
第八章 參考文獻 178
參考文獻 [1].Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The Lancet, 2008. 371(9631): p. 2173-2182.
[2].Mohabbati-Kalejahi, E., et al., A review on creatinine measurement techniques. Talanta, 2012. 97: p. 1-8.
[3].薛凱鴻, 阻抗式生物感測器應用於人類白蛋白檢測之研究. 國立中央大學電機系碩士論文, 民國97年7月.
[4].Sole, K., Moseley,, 重症護理學概論. 五南出版社, 2009.
[5].Levey, A.S. and J. Coresh, Chronic kidney disease. The Lancet, 2012. 379(9811): p. 165-180.
[6].蔡建誠、呂福江、林欽塘、賴宗鼎, 病理學. 華杏出版股份有限公司, 2006.
[7].Andrew D. Rule, M.T.S.L., MD; Erik J. Bergstralh, MSc; Jeff M. Slezak, MSc; Steven J. Jacobsen, MD, PhD; and Fernando G. Cosio, MD, Using Serum Creatinine To Estimate Glomerular Filtration Rate: Accuracy in Good Health and in Chronic Kidney Disease. Annals of Internal Medicine, 2004. 141: p. 929-937.
[8].Andrew S. Levey, M.J.C., MD, PhD, MHS; Tom Greene, PhD; Lesley A. Stevens, MD, MS; Yaping (Lucy) Zhang, MS; Stephen Hendriksen, BA; John W. Kusek, PhD; Frederick Van Lente, PhD, Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Annals of Internal Medicine, 2006. 145: p. 247-254.
[9].Arndt, T., Urine-creatinine concentration as a marker of urine dilution: reflections using a cohort of 45,000 samples. Forensic Sci Int, 2009. 186(1-3): p. 48-51.
[10].Liotta, E., et al., Rapid and direct determination of creatinine in urine using capillary zone electrophoresis. Clin Chim Acta, 2009. 409(1-2): p. 52-5.
[11].Delanghe, J.R. and M.M. Speeckaert, Creatinine determination according to Jaffe--what does it stand for? NDT Plus, 2011. 4(2): p. 83-86.
[12].Anjal C. Sharma, T.J., Rasu Kesavamoorthy, Lianjun Shi, Mohamed A. Virji, David N. Finegold, and Sanford A. Asher, A General Photonic Crystal Sensing Motif - Creatinine in Bodily Fluids. J. Am. Chem. Soc., 2004. 126: p. 2971-2977.
[13].Appleton, S.N.a.H.D., Creatinine : a review. Clinical Chemistry, 1980. 26: p. 1119-1126.
[14].W. G. Gudert, G.E.H., Multicentre evaluation of an enzymatic method for creatinine determination using a sensitive colour reagent. J. Clin. Chem. Clin. Biochem., 1986. 24: p. 889-902.
[15].Dimitrios Tsikas, A.W., Jurgen C.Frolich, Simplified HPLC Method for Urinary and Circulating Creatinine. Clinical Chemistry, 2004. 50: p. 201-203.
[16].Li, X., et al., Direct quantification of creatinine in human urine by using isotope dilution extractive electrospray ionization tandem mass spectrometry. Anal Chim Acta, 2012. 748: p. 53-7.
[17].Wai Siang Law, R.W., Bin Hu, Christian Berchtold, Lukas Meier, Huanwen Chen, Renato Zenobi, On the Mechanism of Extractive Electrospray Ionization. Anal. Chem., 2010. 82: p. 4494-4500.
[18].Laschi, S. and M. Mascini, Planar electrochemical sensors for biomedical applications. Med Eng Phys, 2006. 28(10): p. 934-43.
[19].SARAJU P. MOHANTY, E.K., Biosensors :a tutorial review. IEEE POTENTIALS, 2006. 25: p. 35-40.
[20].Pankaj Vadgama, P.W.C., Biosensors: recent trends. ANALYST, 1992. 117: p. 1657-1670.
[21].Ohira, S., A.B. Kirk, and P.K. Dasgupta, Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry. Anal Biochem, 2009. 384(2): p. 238-44.
[22].Liliane Larpent, C.V., The Need for Using an Enzymatic Colorimetric Assay in Creatinine Determination of Peritoneal Dialysis Solutions. Peritoneal Dialysis International, 1990. 10: p. 89-92.
[23].Alexander Benkert, F.S., Werner Scho1 ssler, Christian Hentschel, Burkhard Micheel, Olaf Behrsing, Gudrun Scharte, Walter Sto cklein, and Axel Warsinke, Development of a Creatinine ELISA and an Amperometric Antibody-Based Creatinine Sensor with a Detection Limit in the Nanomolar Range. Anal. Chem., 2000. 72: p. 916-921.
[24].M. Meyerhoff, G.A.R., An activated enzyme electrode for creatinine. Analytica Chimica Acta, 1976. 85(2): p. 277-285.
[25].Nien-Hsuan Chou, J.-C.C., Member, IEEE, Tai-Ping Sun, Shen-Kan Hsiung, All Solid-State Potentiometric Biosensors for Creatinine Determination Based on pH and Ammonium Electrodes. IEEE SENSORS JOURNAL, 2009. 9: p. 665-672.
[26].Tetsuya Osaka, S.K., Akio Amano, Yusuke Fujino, Hiroshi Mori, Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine. Sensors and Actuators B: Chemical, 2000. 65: p. 58-63.
[27].Yoda, T.T.a.K., Multi-Enzyme Membrane Electrodes for Determination of Creatinine and Creatine in Serum. Clinical Chemistry, 1983. 29: p. 51-55.
[28].Ging-Ho Hsiue, P.-L.L., Jyh-Chern Chen, Multienzyme- Immobilized Modified Polypropylene Membrane for an Amperometric Creatinine Biosensor. Journal of Applied Polymer Science, 2004. 92: p. 3126-3134.
[29].Eun Ju Kim, T.H., Yasuko Yanagida, Eiry Kobatake, Masuo Aizawa, Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system. Analytica Chimica Acta, 1999. 394(2): p. 225-231.
[30].Jae Ho Shin, Y.S.C., Han Jin Lee, Sung Hyuk Choi, Jeonghan Ha, In Jun Yoon, Hakhyun Nam, and Geun Sig Cha, A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences. Anal. Chem., 2001. 73: p. 5965-5971.
[31].Ramanavicius, A., Amperometric biosensor for the determination of creatine. Anal Bioanal Chem, 2007. 387(5): p. 1899-906.
[32].蔡勝樂, 電路與電子學. 五南圖書出版社, 2005.
[33].Dzyadevych, S.V., et al., Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal Bioanal Chem, 2003. 377(3): p. 496-506.
[34].Premanode, B. and C. Toumazou, A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sensors and Actuators B: Chemical, 2007. 120(2): p. 732-735.
[35].Board, N., Screen Printing Technology Hand Book. National Institute Of Industrial Re, 2003.
[36].東遠精技股份有限公司, 平面網印機產品圖. 2013年11月13日取自http://www.atma.com.tw/.
[37].Skyhill明太網印儀器公司, 平網曲面機產品圖. 2013年11月13日取自http://www.ming-tai.com.tw/.
[38].DGE德高機電企業集團, 圓網印刷機產品圖. 2013年11月13日取自http://www.xadegao.com/.
[39].Ivanildo Luiz de Mattos, L.G., Tautgirdas Ruzgas, Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosensors and Bioelectronics, 2003. 18: p. 193-200.
[40].C.A Galán-Vidal, J.M., C Domı́nguez, S Alegret, Glucose biosensor strip in a three electrode configuration based on composite and biocomposite materials applied by planar thick film technology. Sensors and Actuators B, 1998. 52: p. 257-263.
[41].Crouch, E., et al., A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink. Biosens Bioelectron, 2005. 21(5): p. 712-8.
[42].Joseph Wang, M.P.C., Microfabricated Electrophoresis Chip for Bioassay of Renal Markers. Analytical Chemistry, 2003. 75: p. 525-529.
[43].Erlenkotter, A., M. Fobker, and G.C. Chemnitius, Biosensors and flow-through system for the determination of creatinine in hemodialysate. Anal Bioanal Chem, 2002. 372(2): p. 284-92.
[44].Chen, J.C., et al., An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sensors and Actuators B: Chemical, 2006. 115(1): p. 473-480.
[45].Joseph Wang, B.T., Valeberes B Nascimento, Lucio Angnes, Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochimica Acta, 1998. 43: p. 3459-3465.
[46].王世敏、許祖勋、傅晶, 奈米材料原理與製備. 五南出版社, 2004.
[47].Jurczakowski, R., C. Hitz, and A. Lasia, Impedance of porous Au based electrodes. Journal of Electroanalytical Chemistry, 2004. 572(2): p. 355-366.
[48].Sang-Jae Park, S.K., Suyoun Lee, Zheong G. Khim, Kookrin Char, Taeghwan yeon, Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. J. Am. Chem. Soc., 2000. 122: p. 8581-8582.
[49].Peng, S., et al., Application of Flower-Like ZnO Nanorods Gas Sensor Detecting Decomposition Products. Journal of Nanomaterials, 2013. 2013: p. 1-7.
[50].Peng Jiang, J.C., Jane F. Bertone, Vicki L. Colvin, Preparation of Macroporous Metal Films from Colloidal Crystals. J. Am. Chem. Soc., 1999. 121: p. 7957-7958.
[51].陳光華, 奈米薄膜技術與應用. 五南出版社, 2005.
[52].Ramulu, T.S., et al., Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron, 2013. 40(1): p. 258-64.
[53].馬振基, 奈米材料科技原理與應用. 全華科技圖書, 2004.
[54].Huang, H.-M., et al., Highly sensitive glucose biosensor based on CF4-plasma-modified interdigital transducer array (IDA) microelectrode. Sensors and Actuators B: Chemical, 2010. 149(1): p. 59-66.
[55].FORTY, A.J., Corrosion micromorphology of noble metal alloys and depletion gilding. Nature, 1979. 282: p. 597-598.
[56].Jonah Erlebacher, M.J.A., Alain Karma, Nikolay Dimitrov, Karl Sieradzki, Evolution of nanoporosity in dealloying. Nature. 410: p. 450-453.
[57].Niu, X., et al., Porous screen-printed carbon electrode. Electrochemistry Communications, 2012. 22: p. 170-173.
[58].Chen, C., et al., Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sensors and Actuators B: Chemical, 2013. 178: p. 339-342.
[59].Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv, 2012. 30(3): p. 489-511.
[60].Gero Decher, J.-D.H., Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromolekulare Chemie. Macromolecular Symposia, 1991. 46(1): p. 321-327.
[61].B.D. Ratner, A.S.H., F. J. Schoen and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, 1996.
[62].Xu, L., et al., Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. Journal of Applied Polymer Science, 2008. 109(3): p. 1802-1807.
[63].Sharma, S.K., et al., Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene). Biosens Bioelectron, 2004. 20(3): p. 651-7.
[64].Shengshui Hu, C.X., Jiahui Luo, Jun Luo, Dafu Cui, Biosensor for detection of hypoxanthine based on xanthine oxidase. Analytica Chimica Acta, 2000. 412: p. 55-61.
[65].Batra, B. and C.S. Pundir, An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron, 2013. 47: p. 496-501.
[66].Wang, J., et al., Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta, 2009. 77(4): p. 1454-9.
[67].Luo, P., et al., Determination of serum alcohol using a disposable biosensor. Forensic Sci Int, 2008. 179(2-3): p. 192-8.
[68].Kong, T., et al., An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors and Actuators B: Chemical, 2009. 138(1): p. 344-350.
[69].Drive, L., Basics of Electrochemical Impedance Spectroscopy. Application Note 9/3/2010.
[70].Arndt, S., et al., Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 2004. 19(6): p. 583-594.
[71].Varshney, M. and Y. Li, Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium. Talanta, 2008. 74(4): p. 518-25.
[72].Guan, J.-G., Y.-Q. Miao, and Q.-J. Zhang, Impedimetric biosensors. Journal of Bioscience and Bioengineering, 2004. 97(4): p. 219-226.
[73].Andrienko, D., cyclic voltammetry. January 22, 2008.
[74].Pissinis, D.E., L.E. Sereno, and J.M. Marioli, Characterization of glucose electro-oxidation at Ni and Ni–Cr alloy electrodes. Journal of Electroanalytical Chemistry, 2013. 694: p. 23-29.
[75].Wei, H., et al., Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Anal Chim Acta, 2007. 588(2): p. 297-303.
[76].Chen, Q., et al., The selective adsorption of human serum albumin on N-isobutyryl-cysteine enantiomers modified chiral surfaces. Biochemical Engineering Journal, 2012. 69: p. 155-158.
[77].Lowe, N.C.F.a.C.R., Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers. Anal. Chem, 1988. 60: p. 2473-2478.
[78].Sverre Grimnes, Ø.G.M., Bioimpedance and bioelectricity basics. Academic Press, 2008.
[79].Harris, J.R., Ascorbic Acid: Biochemistry and Biochemical Cell Biology. Springer, 1996. 25.
[80].Yadav, S., A. Kumar, and C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem, 2011. 419(2): p. 277-83.
[81].Bernd Tombach, J.S., Fritz Matzkies, Roland M. Schaefer, Gabriele C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta, 2001. 312: p. 129-134.
[82].Reddy, K.K. and K.V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 356-363.
[83].Edward T. Bope, R.D.K., Conn's Current Therapy 2012. Elsevier Health Sciences, 2012.
[84].Barbara H. Esteridge, A.P.R., Norma J. Walters, Basic Medical Laboratory Techniques. Cengage Learning, 2000.
[85].Ciszkowska, M., Stojek, Z., Voltammetry in solutions of low ionic strength. Electrochemical and analytical aspects. Journal of Electroanalytical Chemistry, 1999. 466: p. 129-143.
[86].P.V. Gerwen, W.L., W. Laureys, G. Huyberechts, Maaike Op De Beeck, Kris Baert, Jan Suls, Willy Sansen, P. Jacobs, Lou Hermans, Robert Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B, 1998. 49: p. 73-80.
[87].魏永年, 利用網印碳電極以交流阻抗法檢測糖化血紅素. 國立中央大學電機系碩士論文. 民國100年6月.
[88].魏明通, 普通化學. 五南圖書出版股份有限公司, 2009.
[89].劉英俊, 酵素工程. 中央圖書出版社, 1987.
[90].Kaoru RIKITAKE, I.O., Makoto ANDO,Tadashi YOSHIMOTO, and Daisuke TSURU, Creatinine Amidohydrolase (Creatininase) from Pseudomonas putida. The Journal of Biochemistry, 1979. 86: p. 1109-1117.
[91].JUDITH SCHUMANN, G.B., GUNTER SCHUMACHER, RAINER RUDOLPH, RAINER JAENICKE, Stabilization of creatinase from Pseudomonas putida by random mutagenesis. Protein Science, 1993. 2: p. 1612-1620.
[92].OGUSHI SUSUMU, N.K., EMI SHIGENORI, ANDO MAKOTO, TSURU DAISUKE, Sarcosine Oxidase from Arthrobacter ureafaciens : Purification and Some Properties. Chemical & pharmaceutical bulletin, 1988. 36: p. 1445-1450.
[93].Ping Chen, Y.P., Min He, Xin-Chuang Yan,Yuan Zhang, You-Nian Liu, Sensitive Electrochemical Detection of Creatinine at Disposable screen-Printed Carbon Electrode Mixed with ferrocenemethanol. International Journal of ELECTROCHEMICAL SCIENCE, 2013. 8: p. 8931-8939.
[94].Yadav, S., et al., Tri-enzyme functionalized ZnO-NPs/CHIT/c-MWCNT/PANI composite film for amperometric determination of creatinine. Biosens Bioelectron, 2011. 28(1): p. 64-70.
[95].王璽傑, 平面式抗壞血酸微電極感測器之製備. 國立雲林科技大學光電工程研究所碩士論文, 2008.
[96].林良憲, 利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究. 國立中山大學化學研究所碩士論文, 2010.
[97].吳孟潔, 乙醯氨酚之電氧化研究. 國立屏東科技大學環境工程與科學系碩士學位論文, 2011.
[98].Marcel B. Mădăraş, I.C.P., Stefan Ufer, Richard P. Buck, Microfabricated amperometric creatine and creatinine biosensors. Analytica Chimica Acta, 1996. 319: p. 335-345.
指導教授 蔡章仁(Jang-zern Tsai) 審核日期 2014-4-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明