博碩士論文 100521096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.117.216.36
姓名 邱怡菁(Yi-ching Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究
(Study of Low-Power CMOS Low-Noise Amplifier for K and V-Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文題目為應用於K/V頻段之低功耗CMOS低雜訊放大器之研究。主要在探討低雜訊放大器的低功耗設計方式,提出了四個實現低功耗特性的不同電路。
本論文採用tsmcTM CMOS 0.18 µm 1P6M製程,設計兩個電路:第一個電路為應用於K頻段之低功耗低雜訊放大器。本電路的重點在於如何降低功耗。設計方式為使用基體順向偏壓與電流再利用技術來降低功率消耗,同時使用源極退化增加電路整體線性度。電路量測結果在27 GHz時有最大增益值為5.0 dB,輸入與輸出反射損耗分別為14.9 dB與12.2 dB,雜訊指數為7.3 dB,輸入增益1 dB壓縮點與輸入三階交互調變交叉點為-15 dBm與-3 dBm,功率消耗為9.5 mW,晶片面積為0.64 mm2。第二個電路為一個使用變壓器回授之低功耗低雜訊放大器。本電路的重點在於如何在應用範圍(18~26 GHz)內有效提升增益與降低功耗。設計方式為使用變壓器回授降低功率消耗,並提升電路整體線性度。電路量測結果在23.1 GHz時有最大增益值為8.4 dB,輸入與輸出反射損耗分別為36.2 dB與37.1 dB,雜訊指數為5.4 dB,輸入增益1 dB壓縮點與輸入三階交互調變交叉點為-11 dBm與-3 dBm,功率消耗為4.7 mW,晶片面積為0.436 mm2。
採用tsmcTM CMOS 90 nm 1P9M製程,設計兩個電路:第一個電路為應用於V頻段之低功耗達靈頓低雜訊放大器。本電路的重點在於如何在應用範圍(57~64 GHz)內有效提升增益與降低功耗。設計方式為使用達靈頓對電晶體架構。電路量測結果在55.5 GHz時有最大增益值為3.8 dB,輸入與輸出反射損耗分別為3.1 dB與11.7 dB,雜訊指數為10.3 dB,輸入增益1 dB壓縮點與輸入三階交互調變交叉點為-10 dBm與-1 dBm,功率消耗為12.9 mW,晶片面積為0.531 mm2。第二個電路為應用於V頻段之低功耗低雜訊放大器。本電路的重點在於如何在應用範圍(57~64 GHz)內有效提升增益與降低功耗。設計方式為使用共閘極電晶體架構與電流再利用技術來降低功率消耗。電路量測結果在56.6 GHz時有最大增益值為7.6 dB,輸入與輸出反射損耗分別為27.4 dB與22.7 dB,雜訊指數為9.0 dB,輸入增益1 dB壓縮點與輸入三階交互調變交叉點為-14 dBm與-4 dBm,功率消耗為12.1 mW,晶片面積為0.501 mm2。
摘要(英) The title of this thesis is "Study of Low-Power CMOS Low-Noise Amplifier for K and V-Band Applications." The thesis focuses on the design of low-noise amplifier used in low-power consumption, which include the four different circuits.
The circuits are implemented with tsmcTM CMOS 0.18-μm 1P6M process. The first circuit is a low-power low-noise amplifier for K-band Applications. The emphasis of this circuit is how to reduce the power consumption. The design approach to reduce the power consumption is forward body bias and current-reused technologies, while increasing the overall linearity using source degeneration. The measured results of the designed circuits are illustrated as followings. The LNA achieved a measured maximum gain of 5.0 dB at 27 GHz; the input and output return loss is 14.9 dB and 12.2 dB, respectively. The measured minimum noise figure is 7.3 dB. The input 1-dB gain compression point is -15 dBm and third-order intermodulation terms is -3 dBm. The total power consumption is 9.5 mW. The chip area is 0.64 mm2.
The second circuit is a low-power transformer-feedback low-noise amplifier. For 18~26 GHz application, the emphasis of this circuit is how to improve gain and reduce power consumption. The design is approach for the use of the transformer-feedback to reduce power consumption and improve the linearity. The measured results of the designed circuits are illustrated as followings. The LNA achieved a measured maximum gain of 8.4 dB at 23.1 GHz. The input and output return losses are 36.2 dB and 37.1 dB, respectively. The measured minimum noise figure is 5.4 dB. The input 1-dB gain compression point is -11 dBm and third-order intermodulation terms is -3 dBm. The power consumption is 4.7 mW. The chip area is 0.436 mm2.
Two other circuits are implemented in tsmcTM CMOS 90-nm 1P9M process. The first one is aA low-power Darlington LNA for V-band applications. For 57~64 GHz application, the emphasis of the circuit is how to improve gain and reduce power consumption. The design approach is the use of Darlington pair transistor topology. Circuit measurement results at 55.5 GHz achieved a measured maximum gain of 3.8 dB. The input and output return losses are 3.1 dB and 11.7 dB. The measured minimum noise figure is 10.3 dB. The input 1-dB gain compression point is -10 dBm and third-order intermodulation terms is -1 dBm. The power consumption is totally 12.9 mW. The chip area is 0.531 mm2.
The second circuit is a low-power LNA for V-band Applications. For 57~64 GHz application, the emphasis of this circuit is how to improve gain and reduce power consumption. The design approach uses the common gate transistor structure and current-reused technologies to reduce power consumption. Circuit measurement results at 56.6 GHz achieved a measured maximum gain of 7.6 dB. The input and output return losses are 27.4 dB and 22.7 dB. The measured minimum noise figure is 9.0 dB. The input 1-dB gain compression point is -14 dBm and third-order intermodulation terms is -4 dBm. The power consumption is totally 12.1 mW. The chip area is 0.501 mm2.
關鍵字(中) ★ 低雜訊放大器
★ 低功耗
★ K頻段
★ V頻段
關鍵字(英) ★ Low-noise amplifier
★ Low-power
★ K-Band
★ V-Band
論文目次 第一章 緒論
1.1 研究動機
1.2 章節簡介
第二章 低功耗低雜訊放大器之研製
2.1 系統介紹
2.2 低雜訊放大器介紹
2.2.1 低雜訊放大器重要參數
2.2.2 雜訊分析
2.3 低功耗介紹
2.3.1 電流再利用(Current-reused)
2.3.2 基體順向偏壓(Forward-body-bias, FBB)
2.3.3 變壓器(Transformer)
2.3.4 達靈頓對(Darlington)
第三章 K頻段低功耗低雜訊放大器之研製
3.1 K頻段簡介
3.2 K頻段之低功耗低雜訊放大器研製
3.2.1 電路分析
3.2.2 量測結果
3.2.3 討論
3.3 一個使用變壓器回授之低功耗低雜訊放大器研製
3.3.1 電路分析
3.3.2 量測結果
3.3.3 討論
第四章 V頻段低功耗低雜訊放大器之研製
4.1 V頻段簡介
4.2 V頻段之低功耗達靈頓低雜訊放大器研製
4.2.1 電路分析
4.2.2 量測結果
4.2.3 討論
4.3 V頻段之低功耗低雜訊放大器研製
4.3.1 電路分析
4.3.2 量測結果
4.3.3 討論
第五章 結論
5.1 結論
5.2 未來期許與研究方向
參考文獻
參考文獻 [1] H. T. Friis, “Noise figure of radio receivers,” Proceedings of the Institute of Radio Engineers, vol. 32, no. 7, pp. 419-422, July 1944.
[2] John M. W. Rogers, Calvin Plett, “Radio Frequency Integrated Circuit Design,” Artech House, 2003
[3] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303–2311, December 1992.
[4] B. Razavi, “RF Microelectronic,”2nd ed, Prentice Hall, 2011.
[5] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge, 1998.
[6] H.-T. Chou, Z.-L. Ke, and H.-K. Chiou, “A low power compact size forward body-biased K-band CMOS low noise amplifier,” IEEE Asia Pacific Microwave Conference, pp. 494–497, December 2011.
[7] D. Wu, R. Hung, W. Wong, and Y. Wang, “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 7, pp. 543–545, July 2007.
[8] J. R. Long, “Monolithic transformers for silicon RFIC,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, September 2000.
[9] A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren and D. Ritter, ” A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology,“IEEE Radio Frequency Integrated Circuits Symposium, pp. 373–376, June 2008.
[10] C.-P. Chang, J.-H. Chen, and Y.-H. Wang, “A Fully integrated 5 GHz low-voltage LNA using forward body bias technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 176–178, March 2009.
[11] C.-C. Kuo and H. Wang, “A 24-GHz low power low noise amplifier using current reuse and body forward bias techniques in 0.18-μm CMOS technology," IEEE Asia Pacific Microwave Conference, pp. 1509–1512, December 2010.
[12] P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, “An ultra-low-power transformer-feedback 60-GHz low-noise amplifier in 90-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197–199, April 2012.
[13] David J. Cassan, John R. Long, “A 1-V transformer-feedback low-noise amplifier
for 5-GHz wireless LAN in 0.18-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427–435, March 2003.
[14] H.-K. Chiou, H.-Y. Liao, K.-C. Liang, "Compact and low power consumption K-band differential low-noise amplifier design using transformer feedback technique," IET Microwave, Antennas & Propagation, Vol. 2, No. 8, pp. 871–879, 2008.
[15] Y. Wei, S. Hsu, and J. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 116–118, February 2009.
[16] Y.-H. Yu, Y.-S. Yang, Y.-J. Emery Chen, "A compact wideband CMOS low noise amplifier with gain flatness enhancement," IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 502–509, March 2010.
[17]. C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Broderson, “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144–155, January 2005.
[18]. T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. Yang, P. Schvan, and S. P. Voinigescu “ Algorithmic design of CMOS LNAs and PAs for 60-GHz radio ,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[19] C.-C. Huang, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, "Low-power, high-gain V-band CMOS low noise amplifier for microwave radiometer applications," IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 104–106, February 2011.
[20]. C. Inui, I. C. H. Lai, and M. Fujishima, “60 GHz CMOS current-reuse cascade amplifier,” IEEE Asia Pacific Microwave Conference, pp. 793–796, December 2007.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2013-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明