博碩士論文 100521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.227.46.43
姓名 林宗憲(Tsung-Hsien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 注入鎖定除頻器之研究及其鎖相迴路應用
(Research on Injection-Locked Frequency Divider and Its Phase-Locked Loop Application)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對應用於微波與毫米波鎖相迴路之注入鎖定技術。第二章與第三章分別闡述應用於鎖相迴路中的注入鎖定除頻器及其鎖相迴路應用。第四章為注入鎖定振盪器的電路設計與量測結果。
第二章介紹各類除頻器架構以及設計原理,並且提出注入鎖定除六與除五除頻器對鎖定頻寬的理論模型,從理論模型分析得知,鎖定頻寬跟注入器(injector)的元件與注入訊號大小成正比。同時採用台積電提供的90 nm低功耗互補式金氧半場效電晶體製程(TSMC 90 nm LP CMOS)實現注入鎖定除六除頻器,量測最大鎖定頻寬為2.9 GHz。第三章是將第二章所提出之除六除頻器整合至鎖相迴路系統,並且討論外在環境對量測電路的影響,提出實質的解決方案。同樣是使用台積電提供的90 nm製程實現,鎖相迴路的鎖定頻寬為25.3~27.3GHz,輸出功率接大於-8 dBm。在鎖定頻率為25.38 GHz,在距離中心頻10 kHz、100 kHz與1 MHz下,分別為-86.4、-90.7與-91.69 dBc/Hz。電路直流總功耗為40 mW,達到低直流功耗的效果。
第四章提出一個使用基級注入鎖定振盪器。藉由調整閘極端的電壓與基級注入鎖定技術,改善輸出相位雜訊與鎖定頻寬。使用台積電提供的90 nm製程實現,在振盪頻率為50 GHz、60 GHz與70 GHz下,有最寬的鎖定頻寬百分比分別為7.8%、13.8%與14.7%,總直流功耗為31.2~44.4mW。
摘要(英) This thesis focuses on the injection-locked technique for the microwave and millimeter-wave phase-locked loop (PLL). A Ka-band injection-locked frequency divider (ILFD) and its PLL application are presented in Chapter 2 and 3, respectively. Finally, The design and analysis results of a V-band injection-locked oscillator (ILO) are proposed in Chapter 4.
Several frequency dividers and the injection-locked theory are introduced in Chapter 2. The locking range of divide-by-6 and divide-by-5 ILFDs is investigated to obtain the design methodology. From the analysis, the locking range of ILFDs is proportional to the device size of the injectiors and the amplitude of the injection signal. The proposed divide-by-6 ILFD is fabricated using TSMC 90 nm low power (LP) CMOS process and it features with a locking range of 2.9 GHz. Moreover, the proposed divide-by-6 ILFD is applied to a fully integrated Ka-band PLL. Several DC bypass networks for the measurement is discussed to further reduce the baseband /DC noise, and the effective solution is also addressed. The measured output phase is -86.4, -90.7, and -91.69 dBc/Hz at 10 kHz, 100 kHz, and 1 MHz offset at 25.38 GHz. The total DC consumption of PLL is about 40 mW.
The proposed injection-locked oscillator using TSMC 90 nm LP CMOS process is presented in Chapter 4. With the body-injection technique, wider locking range can be achieved. As the oscillation frequency are 50, 60, and 70 GHz, the widest locking ranges percentage at 7.8%, 13.8% and 14.7%, respectively. The total DC power consumption is about 31.2~44.4 mW.
關鍵字(中) ★ 鎖相迴路
★ 注入鎖定
★ 頻率除頻器
★ 除六
★ 振盪器
關鍵字(英) ★ Phase-locked loop
★ injection-locked
★ frequency divider
★ divide-by-6
★ oscillator
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 2
1.3 貢獻 2
1.4 論文架構 3
第二章 應用於Ka頻段注入鎖定除頻器 4
2.1 簡介 4
2.2 除頻器架構概述 4
2.2.1 單真一相位時序(TSPC)除頻器[60] 5
2.2.2 電流模式邏輯(CML)除頻器[61] 6
2.2.3 米勒(Miller)除頻器[62] 8
2.2.4 注入鎖定原理與除頻器 9
2.2.4.1 注入鎖定原理概述[64] 9
2.2.4.2 注入鎖定(ILFD)除頻器 13
2.3 注入鎖定除頻器頻寬分析 14
2.3.1 分析電路模型簡介[39] 14
2.3.2 注入鎖定除六除頻器鎖定頻寬分析 15
2.3.2.1 電路架構與模型 15
2.3.2.2 Q值分析 17
2.3.2.3 注入電流與振盪電流 18
2.3.2.4 輸入阻抗討論 22
2.3.2.5 鎖定頻寬 24
2.3.3 注入鎖定除五除頻器鎖定頻寬分析 25
2.3.3.1 電路架構分析 25
2.3.3.2 注入電流迴路一分析 27
2.3.3.3 注入電流迴路二分析 29
2.3.3.4 鎖定頻寬分析 32
2.3.4 分析結果與討論 34
2.4 Ka頻段注入鎖定除六除頻器 35
2.4.1 高除數預除器架構簡介[72] 35
2.4.2 電路設計 36
2.4.3 實驗結果與討論 41
2.5 總結 49
第三章 Ka頻段鎖相迴路 51
3.1 簡介 51
3.2 壓控振盪器 52
3.3 除頻器 54
3.4 相位頻率偵測器 56
3.5 電荷幫浦 57
3.6 迴路濾波器與迴路分析 61
3.7 電路實現及實驗結果與討論 65
3.8 除錯與量測改進方法 72
3.9 總結 83
第四章 基極注入鎖定振盪器 85
4.1 簡介 85
4.2 注入鎖定振盪器概述 86
4.3 鎖定頻寬分析[92] 88
4.4 電路設計 90
4.5 實驗結果與討論 92
4.6 除錯與量測結果討論 102
4.7 總結 104
第五章 結論 106
附錄 : 相位陣列接收機量測 107
A.1 TSMC LP 90 nm CMOS V頻段單、雙路相位陣列電路 107
A.1.1 低雜訊放大器 107
A.1.1 正交調變器[107] 110
A.1.3 閘極驅動達靈頓混波器 111
A.4 V頻段單、雙路相位陣列電路模擬與量測結果 112
A.2 WIN GaAs 0.5 μm E/D-mode PHEMT Ka頻段四路相位陣列電路 121
A.2.1 低雜訊放大器 121
A.2.2 正交向量調變器 124
A.2.3 閘極驅動達靈頓混波器 126
A.2.4 Ka頻段四路相位陣列模擬與量測結果 127
A.3 總結 133
參考文獻 135
參考文獻 [1] Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77GHz FMCW radar system in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 216-217, Feb. 2010.
[2] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits , vol.45, no.4, pp. 928-937, Apr. 2010.
[3] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[4] R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE, vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[5] P.-N. Chen, P.-J. Peng, C. Kao, Y.-L. Chen, and J. Lee, “A 94GHz 3D-image radar engine with 4TX/4RX beamforming scan technique in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.146-147, Feb. 2013.
[6] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[7] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[8] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[9] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[10] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[11] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-µm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[12] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[13] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[14] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[15] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[16] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[17] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[18] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[19] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[20] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[21] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[22] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[23] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[24] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[25] X. Zhang, X. Zhou, and A.S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol.40, no.5, pp.895-902, May 1992.
[26] K. Chang, RF and Microwave Wireless Systems, John Wiley & Sons, 2000.
[27] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[28] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.435-438, Jun. 2008.
[29] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. Solid-State Circuits Conf., pp. 135-138, Sept. 2004.
[30] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 /spl mu/m CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , pp.412-413, Feb. 2001.
[31] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.544-621, Feb. 2007.
[32] K.-H. Tsai, L.-C. Cho, J.-H. Wu, S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper, pp. 466-628, Feb. 2008.
[33] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
[34] S.-L. Jang, C.-F. Lee, and W.-H. Yen, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142-144, Feb. 2008.
[35] H. Wu and L. Zhang, "A 16-to-18GHz 0.18-µm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2482-2491, Feb. 2006.
[36] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking Range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, Jul. 2010.
[37] X.-P. Yu, A.van Roermund, X.-L. Yan, H. M. Cheema, and R. Mahmoudi, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon.s Lett., vol. 19, no. 9, pp. 575-577, Sept. 2009.
[38] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-Tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, Apr. 2010.
[39] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory. Tech., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[40] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2472-2481, Feb. 2006.
[41] P. Mayr, C. Weyers, and U. Langmann, “A 90GHz 65nm CMOS injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.198-596, Feb. 2007.
[42] S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[43] S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[44] S-L Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao, “Circuit techniques for CMOS divide-by-four frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 217-219, Mar. 2007.
[45] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344-346, May 2008.
[46] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-µm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[47] J. R. Hu and B. P. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.665-668, Jun. 2008.
[48] P.-K. Tsai, T.-H. Huang, and T.-H. Pand, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Lett., vol. 46, no. 14, pp.1003-1004, Jul. 2010.
[49] 李銘偉,24 GHz 與60 GHz CMOS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國99年。
[50] 黃致勝,微波及毫米波注入式除頻器與振盪器暨射頻前端應用,國立中央大學電機工程研究所碩士論文,民國100年。
[51] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[52] 廖彥涵,微波毫米波寬頻振盪器與鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國102年。
[53] B. A. Kopp, M. Borkowski, and G. Jerinic, “Transmit/receive modules,” IEEE Trans. Microw. Theory. Tech., vol. 50, no. 3, pp.827-834, Mar. 2002.
[54] D. Parker and D. C. Zimmermann, “Phase arrays-part I: Theory and architectures,” IEEE Trans. Microw. Theory. Tech., vol. 50, no. 3, pp.678-687, Mar. 2002.
[55] X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased-array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311-2320, Dec. 2004.
[56] K. Koh and G. M. Rebeiz, “An X- and Ku-band 8-element linear phased array receiver,” in Proc. IEEE Custom Integ. Circuits Conf., pp.761-764, Sep. 2007.
[57] N. D. Dalt, S. Deksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizerw with 3 ps jitter in 0.18 µm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Device Research Conf., pp. 415-418, Sep. 2002.
[58] T.N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp.620-625, Mar. 2008.
[59] J.-L. Li, S.-W. Qu, and Q. Xue, “A theoretical and experimental study of injection-locked fractional frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2399-2408, Nov. 2008.
[60] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 2004.
[61] U. Singh and M. M. Green, “High-frequency CML clock divider in 0.13-µm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658-1661, Aug. 2005.
[62] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
[63] B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[64] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國100年。
[65] A. E. Sieman, Lasers, CA: University Science Books, 1986.
[66] R. R. Ward, The living Clocks, New York: Alfred Knopf, 1971.
[67] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[68] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Jill, 2001, ch.2.
[69] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[70] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13 µm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[71] B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, Jun. 2011.
[72] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[73] “Sonnet User’s Guide,” 12th ed Sonnet Software Inc. North Suracuse, NY, 2009.
[74] B. D. Muer, M. Borremans, M. Steyaert, and G. L. P. Schoepf, “A 2 GHz low phase noise integrated LC-VCO set with flicker noise upconversion minimization” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 100-103, Jan. 2000.
[75] C. M. Hung and K. K. O, “A packaged 1.1 GHz CMOS VCO with phase noise of -126 dBc/Hz at a 600 kHz offset,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 100-103, Jan. 2000.
[76] H. Notani, H. Kondoh, and Y. Matsuda, “A 622-MHz CMOS phase-locked loop with precharge-type phase frequency detector,” in Proc.VLSI Circuits, Dig. Tech. Papers., pp. 129-130, Jun. 1994.
[77] H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1021-1027, Aug. 2002.
[78] W. O. Keese, “An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops,” National Semiconductor Application Note, no. 1001, May 1996.
[79] C. Quemada, G. Bistué , and I. Adin, Design methodology for RF CMOS phase locked loops, Artch-House, 2009.
[80] J. Kim, J.-K. Kim, B.-J. Lee, N. Kim, D.-K. Jeong, W. Kim, “A 20-GHz phase-locked loop for 40-Gb/s serializing transmitter in 0.13-μm CMOS,” IEEE J .Solid-State Circuits, vol. 41, no. 4, pp.899-908, Apr. 2006.
[81] Y.-H. Peng and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[82] Y.-H. Peng and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans Microw. Theory Tech., vol. 55, no. 1, pp. 44-51, Jan. 2007.
[83] O. Richard, A. Siligaris, F. Badets, C. Dehos, C. Dufis, P. Busson, P. Vincent, D. Belot, and P. Urard, “A 17.5-to-20.94GHz and 35-to-41.88GHz PLL in 65nm CMOS for wireless HD applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.252-253, Feb. 2010.
[84] Y. Ding and K. K O, “A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp.1240-1249, Jun. 2007.
[85] A. W. L. Ng, G. C. T.Leung, K.-C. Kwok, L. L. K. Leung, and H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers., pp. 158 , Feb. 2005.
[86] J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004-1015, May 2006.
[87] J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[88] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz Phase lock loop with gain-boosted charge pump embedded in 0.18 µm CMOS technology,” in Proc. Asia-Pacific Microw. Conf., pp. 643-645, Dec. 2012.
[89] M. Meghelli, A. V. Rylyakov, S. J. Zier, M. Sorna, and D. Friedman, “A 0.18-μm SiGe BiCMOS receiver and transmitter chipset for SONET OC-768 transmission systems,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2147-2154, Dec. 2003.
[90] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Micow. Theory Tech., vol. 56, no. 8, pp. 1869-1878, Aug. 2008.
[91] Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[92] J.-C. Chien and L.-H. Lu, “Analysis and design of wideband injection-locked ring oscillators with multiple-input injection,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1906-1915, Sep. 2007.
[93] C.-C. Chen, C.-C. Li, B.-J. Huang, K.-Y. Lin, H.-W. Tsao, and H. Wang, “Ring-based triple-push VCOs with wide continuous tuning ranges,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 2173-2183, Sep. 2009.
[94] F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473-475, Aug. 2006.
[95] W.-L. Chan and J. R. Long, “A 56-65 GHz injection-locked frequency tripler with quadrature output in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739-2746, Dec. 2008.
[96] C.-N. Kuo and T.-Z. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560-562, Oct. 2010.
[97] Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.776-779, May 2010.
[98] Y.-L. Yeh and H.-Y. Chang, “A W-band wide locking range and low dc power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 2, pp. 860-870, Feb. 2013.
[99] S. Lin, K. B. Ng, H. Wong, K. M. Luk, S. S. Wong, and A. S. Y. Poon, “A 60GHz digitally controlled RF beamforming array in 65nm CMOS with off-chip antennas,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[100] Y. Yu, P. G. M.Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, and A. H. M. Van Roermund, “A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1697-1709, Sep. 2010.
[101] S. Drago, M. C. A. Van Schie, A. J. M. De Graauw, J. F. Osorio, M. Spella, Y. Yu, C. S. Vaucher, R. M. T. Pijper, and L. F. Tiemeijer, “A 60GHz wideband low noise eight-element phased array RX front-end for beam steering communication applications in 45nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 435-438, Jun. 2012.
[102] J.-L. Kuo, Y.-F. Lu, T.-Y. Huang, Y.-L. Chang, Y.-K. Hsieh, P.-J. Peng, I-C. Chang, T.-C. Tsai, K.-Y. Kao, W.-Y. Hsiung, J. Wang, Y. A. Hsu, K.-Y. Lin, H.-C. Lu, Y.-C. Lin, L.-H. Lu, T.-W. Huang, R.-B. Wu, and H. Wang, “60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 743-756, Mar. 2012.
[103] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008.
[104] K.-J. Koh and G. M. Rebeiz, “A Q-band four-element phased-array front-end receiver with integrated Wilkinson power combiners in 0.18-µm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 9, pp. 2046-2053, Sep. 2008.
[105] D.-W. Kang, J.-G. Kim, B.-W. Min, and G. M. Rebeiz, “Single and four-element Ka-band transmit/receive phased-array silicon RFICs with 5-bit amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3534-3543, Dec. 2009.
[106] T. Yu and G. M. Rebeiz, “A 24 GHz 6-bit CMOS phased-array receiver,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 422-424, Jun. 2008.
[107] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2013-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明