博碩士論文 100521113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.139.81.58
姓名 陳昫丞(Shiu-Cheng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鐵電可變電容之設計與製作
(Design and Fabrication of Ferroelectric Varactors)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 用於功率放大器效率提升之鐵電基可調式匹配網路
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鐵電可變電容具有高電容密度、高可調度、低操作電壓及較低的製程複雜度等優點。在本研究中,我們設計兩種基於鈦酸鍶鋇薄膜的平行板電容結構、發展其製作流程,並量測其特性。
第一種鐵電平行板電容結構以Pt下電極定義出電容之寬度,以Pt/Au上電極定義出電容之長度,中間夾層為鈦酸鍶鋇薄膜。此結構製作流程單純,僅需三道光罩。我們在數個製程梯次中基於此結構製作鐵電平行板電容;在本論文中,我們描述其中四個梯次的量測結果。此結構之鐵電平行板電容在偏壓6–7 V時可達到2:1的可調度,而電容之崩潰電壓約在7 V左右。量測得之電容密度最高約為20 fF/µm2;於2.4 GHz下、偏壓為0 V時,其品質因子約在15左右。
雖然前述之平行板電容結構具有製程單純之優點,但其崩潰電壓偏低,如此將限制其容值變化之範圍。崩潰電壓低通常是由於薄膜的階梯覆蓋能力不佳;為解決此問題,我們設計了第二種鐵電平行板電容結構。在第一種結構中,上下電極交曡的階梯區域之間為鈦酸鍶鋇薄膜;在第二種結構中,則將之取代為崩潰電場較高且階梯覆蓋能力的氮化矽薄膜。此結構之製程共需五道光罩。量測結果顯示,崩潰電壓可由原本的7 V提升至14 V。此鐵電可變電容偏壓在5 V時可以達到2:1的可調度,偏壓在12 V時可以達到3:1的可調度。電容密度最高約為19 fF/µm2;於1.8 GHz下、偏壓為0 V時,品質因子可達20以上。
我們成功地發展了兩種鐵電可變電容結構之製作流程,並比較其量測結果。第一種電容結構具有製程單純之優點,第二種電容結構則具有較高的崩潰電壓。藉由製程之改良,崩潰電壓可提升為兩倍,大幅地增進了鐵電可變電容的實用性。
摘要(英) Ferroelectric varactor has the advantages of high capacitance density, high tunability, low operating voltage, and low complexity in fabrication. In this research, we have designed two different types of capacitor structures for parallel-plate capacitors based on barium-strontium-titanate (BST) thin films, developed the fabrication flows, and characterized the performance of the ferroelectric varactors.
The first capacitor structure has its width and length defined by the Pt bottom electrode and Pt/Au top electrode, respectively, with BST thin film as the insulating layer stacking in between the top and bottom electrodes. Fabrication complexity of this structure is low as only three masks are required. We have fabricated ferroelectric parallel-plate capacitors based on this capacitor structure in several fabrication runs. In this thesis, we describe the measurement results of the ferroelectric varactors produced in four of these runs. Measurement results show that, 2:1 tunability can be reached under a bias voltage of 6–7 V for the ferroelectric varactors based on the first capacitor structure. The breakdown voltage of the varactors is about 7 V. The maximum capacitance density is approximately 20 fF/µm2. Under 0-V bias, the quality factor at 2.4 GHz is about 15.
Though the former capacitor structure has the advantage of simple fabrication flow, the breakdown voltage of the ferroelectric varactor based on it is low, which limits the capacitance tuning range. Low breakdown voltage is usually due to the step coverage of thin films is poor. To solve this problem, the second type of capacitor structure is designed. In the first type of capacitor structure, it is the BST thin film that presents at the step where bottom and top electrodes overlap. In the second type of capacitor structure, the BST thin-film at the step is replaced by silicon-nitride thin film, which possesses higher breakdown field and better step coverage capability. Five masks are required to fabricate ferroelectric capacitors based on this capacitor structure. Measurement result shows that the breakdown voltage is improved from the original 7 V to 14 V. The tunability reaches 2:1 and 3:1 at bias voltage of 5 V and 12 V, respectively. The maximum capacitance density is around 19 fF/µm2. Under 0-V bias, the quality factor at 1.8 GHz is greater than 20.
We have successfully developed the fabrication flows for two types of capacitor structures for ferroelectric varactors and compared the measurement results. The first capacitor structure favors simple fabrication process whereas the second possesses high breakdown voltage. Through the advance of the fabrication process, the breakdown voltage is increased by a factor of two, which greatly enhances the practicability of the ferroelectric varactors
關鍵字(中) ★ 鐵電可變電容 關鍵字(英) ★ Ferroelectric Varactors
論文目次 摘要I
AbstrateII
誌謝IV
目錄V
第一章 緒論1
1–1研究動機1
1–2可變電容技術簡介2
1–3鐵電材料特性4
1–4章節介紹6
第二章 鐵電平行板電容7
2–1簡介7
2-2鐵電平行板電容光罩設計8
2–3鐵電平行板電容製作流程12
2–3–1下電極製作流程12
2–3–2鐵電薄膜沉積原理及條件16
2–3–3鐵電薄膜介電層製作流程18
2–3–4上電極製作流程20
2–4鐵電平行板電容量測結果25
2–4–1第000梯量測結果30
2–4–2第001梯量測結果36
2–4–3第002梯量測結果42
2–4–4第003梯量測結果48
2–5結果與討論54
第三章 高崩潰電壓之鐵電平行板電容56
3–1簡介56
3–2高崩潰電壓之鐵電平行板電容光罩設計58
3–3高崩潰電壓之鐵電平行板電容製作流程62
3–3–1下電極製作流程與鐵電薄膜沉積62
3–3–2上電極製作流程64
3–3–3鐵電薄膜介電層製作流程66
3–3–4氮化矽保護層之沉積與製作流程68
3–3–5接腳層(pad)製作流程71
3–4高崩潰電壓之鐵電平行板電容量測結果73
3–4–1第004梯編號Si3N4–1量測結果77
3–4–2第004梯編號Si3N4–2量測結果83
3–5結果與討論89
第四章 結論90
4–1結果與討論90
4–2未來研究方向92
參考文獻93
附錄95
參考文獻 [1] F.Ellinger, H.Jackel, and W.Bochtold, “Varactro–loaded transmission–line phase shifter at C–band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp.1135–1140, Apr. 2003.
[2] Borgioli, Y. Liu, A. S. Nagra, and R. A. York, “Low–loss distributed MEMS phase shifter,” IEEE Microw. Guided Lett., vol. 10, no. 1, pp. 7–9, Jan. 2000.
[3] J. S. Hayden and G. M. Rebeiz, “2–bit MEMS distributed X–band phase shifters,” IEEE Microw. Wireless Compon. Lett., vol. 10, no. 12, pp. 540–542, Nov. 2000.
[4] B. Acikel and R. A. York, “A new X band 180° high performance phase shifter using (Ba,Sr)TiO3 thin films,” IEEE MTT–S Int. Micro. Symp. Dig., vol. 3, pp. 1467–1469, Jan. 2002.
[5] G. Velu, K. Blary, L. Burgnies, J. C. Carru, E. Delos, A. Marteau, and D. Lippens, “A 310°/3.6–dB K–band phase shifter using paraelectric BST thin films,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 87–89, Feb. 2006.
[6] M. Sazegar, Y. Zheng, H Maune, C. Damm, X. Zhou, J. Binder, and R. Jakoby, “Low–cost phase–array antenna using compact tunable phase shifters based on ferroelectric ceramics,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1265–1273, May 2011.
[7] Y. Lu, “RF MEMS devices and their applications in reconfigurable RF/microwave circuits,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, USA, 2005.
[8] S. Gevorgain, Ferroelectrics in Microwave Devices, Circuits and Systems, 1st ed. London: Springer–Verlag, 2009.
[9] S. Yamamichi, A. Yamamichi, D. Park, T.–J. King. And C. Hu, “Impact of time dependent dielectric breakdown and stress–induced leakage current on the Reliability of high dielectric constant(Ba,Sr)TiO3 thin–film capacitors for Gbit–scale DRAM’s,” IEEE Trans. Electron Device, vol. 46, no. 2, pp. 342–347, Feb. 1999.
[10] M. Norling, D. Kuylenstierna, A. Vorobiev, and S. Gevorgian, “Layout Optimization of Small–Size Ferroelectric Parallel–Plate Varactors,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 6, June 2010.
[11] F. H. Reid, and W. Goldie, Gold Plating Technology, Electrochemical Publications, 1974.
[12] T. Inoue, S. Ando, H. Okudaira, J. Ushio, A. Tomizawa, H. Takehera, T, Shimazaki, H. Yamamoto and H. Yokono, “Stable Non–cyanide Electroless Gold Plating Which Is Applicable to Manufacturing of Fine Pattern Printed Wiring Boards,” Proceeding of the 45th IEEE Electronic Components Technology Conference, pp. 1059–1067, 1995.
[13] Z. Xinen, “Switchable and Tunable Ferroelectric Thin Film Radio Frequency Components,” Ph.D. dissertation, The University of Michigan, 2009.
[14] Y. Zhou, H. K. Chan, C. H. Lam, and F. G. Shin, “Mechanisms of imprint effect on ferroelectric thin films,” Journal of Applied Physics, 2005.
[15] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller et al., “The interface screening model as origin of imprint in PbZrxTi1–xO3 thin films. I. Dopant, illumination, and bias dependence,” Journal of Applied Physics, 2002.
[16] T. Minamikawa, Y. Yonezawa, A. Heya, Y. Fujimori, T. Nakamura, A. Masuda and H. Matsumura, “Preparation of SiNx passivation films for PZT ferroelectric capacitors at low substrate temperatures by catalytic CVD,” Thin Solid Films, pp. 284–287, 2001.
[17] R. A. York, “Tunable Dielectrics for RF Circuits,” Multifunctional Adaptive Microwave Circuits and Systems, 2009.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2013-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明