博碩士論文 100521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.191.22
姓名 陳海平(Hai-Ping Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於功率放大器效率提升之鐵電基可調式匹配網路
(Ferroelectric-Based Tunable Matching Networks for Power Amplifier Efficiency Enhancement)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 提升射頻功率放大器之效率將可改善行動產品的散熱問題以及增長產品的使用時間。可調式負載技巧可用於提升功率放大器在輸出功率退回時的效率。我們設計了一1.95 GHz的功率放大器,並使用鐵電可變電容於其輸出匹配網路中,以提供可調之負載阻抗,展示功率放大器效率之提升。
我們發展一鐵電薄膜平行板電容之製程。量測結果顯示,面積為10×10 μm2之鐵電可變電容其電容值可達2 pF。當偏壓約7 V時,鐵電可變電容容值可以變化至0 V時電容值的一半;於1.95 GHz,電容之Q值皆大於20。
我們使用離散式的pHEMT電晶體,設計一操作於1.95 GHz的可調式功率放大器。電晶體汲極偏壓為5 V,閘極偏壓為0.45 V,此時靜態電流為256 mA,放大器操作於Class AB區域。我們使用ADS,在不同輸入功率下進行負載牽引模擬;接著使用Matlab找出在不同輸出功率下可達最佳PAE之負載阻抗值。基於這些最佳負載阻抗值,我們進一步設計一鐵電基可調式匹配網路;其阻抗變化範圍須涵蓋所需之最佳負載阻抗。
我們使用自行發展的製程於一藍寶石基板上製作了鐵電基可調式匹配網路。在同一基板上,我們使用銀膠來安置電晶體及其他被動元件,以完成功率放大器之製作。量測結果顯示,可調式匹配網路之阻抗變化範圍與模擬結果相近。於1.95 GHz下,可調式功率放大器之最大輸出P1dB約為13.1 dBm,小訊號增益約為6 dB。調整可調式匹配網路的偏壓可使功率放大器在3 dB功率退回範圍內皆達到效率之提升及功耗之改善。在3 dB功率退回時,直流功耗可從約660 mW降低至 570 mW。
本論文發展了一鐵電可變電容之製程,並將鐵電可變電容應用於可調式匹配網路。最後,藉由調整可調式匹配網路的偏壓,我們驗證功率放大器於功率退回區域之效率確可得到改善。 
摘要(英) By enhancing the power efficiency of RF power amplifiers (PAs), the heating problem of mobile devices can be alleviated and their talk time can be extended. Variable load technique has been proposed to enhance the efficiency of PAs at power back-off. In this work, a PA is designed at 1.95 GHz. Ferroelectric capacitors are used in the output matching network of the PA to provide a tunable load impedance, demonstrating efficiency enhancement.
A fabrication process for ferroelectric parallel-plate capacitors is developed. Measurement results show that, the capacitance of a ferroelectric varactor with an area of 10×10 μm2 is 2 pF. When biased at about 7 V, the capacitance of the ferroelectric varactor can be reduced to half of the capacitance at 0-V bias. At 1.95 GHz, the quality factor of the ferroelectric varactor is above 20.
A 1.95-GHz tunable PA is designed using a commercially available discrete pHEMT transistor. The drain and gate of the transistor are biased at 5 V and 0.45 V, respectively, with the quiescent current being 256 mA. The power amplifier operates in Class AB region. Load-pull simulations under different input power levels are performed using ADS. The simulated data is then processed using Matlab to find the optimum load impendences that maximize the power-added efficiency (PAE) at various output power levels. After that, we then proceed to design a ferroelectric-based tunable matching network, of which the impedance coverage must encompass the desired optimum load impendences.
Based on the fabrication process developed by us, the ferroelectric-based tunable matching network is on a sapphire substrate. On the same substrate, the pHEMT transistor and other passive components are mounted using epoxy, completing the fabrication of the tunable PA. On wafer measurement is performed. The measured impendence coverage of the tunable matching network is found to be close to the simulated impedance coverage. At 1.95 GHz, the maximum output P1dB of the tunable PA is approximately 13.1 dBm. Its small-signal gain is about 6 dB. By adjusting the bias voltages of the tunable matching network, the efficiency enhancement and the dc power consumption reduction are observed as long as the power back-off is within 3 dB. At 3-dB back-off, the dc power consumption is reduced from 660 mW to 570 mW.
In this work, a fabrication process for ferroelectric varactors is developed. A tunable matching network is designed based on the ferroelectric varactors. Finally, by changing the bias voltages of the tunable matching network, it is demonstrated that the efficiency of the PA at power back-off is indeed enhanced.
關鍵字(中) ★ 鐵電基
★ 可調式匹配網路
★ 功率放大器
關鍵字(英) ★ Ferroelectric-Based
★ Tunable Matching Networks
★ Power Amplifier
論文目次 摘要I
AbstractII
目錄IV
第一章 緒論1
1–1研究動機1
1–2文獻回顧3
1–3章節介紹5
第二章 鐵電可變電容於1.95 GHz之製作與應用6
2–1 簡介6
2–2 鐵電可變電容特性與製作9
2–3 鐵電可變電容量測之結果12
2–4 結果與討論15
第三章 使用鐵電可變電容於可調式匹配技巧以提升效率之1.95 GHz功率放大器 16
3–1 簡介16
3–2 可調式功率放大器設計20
3–2–1 最佳輸出阻抗21
3–2–2 匹配網路設計23
3–2–3 可調式功率放大器製作28
3–3 電路模擬與量測結果33
3–3–1 S參數模擬與量測結果33
3–3–2 大訊號模擬與量測結果44
3–4 結果與討論50
第四章 結論51
4–1結果與討論51
4–2未來研究方向53
參考文獻54
附錄A 58
參考文獻 [1] V. Kaajakari, A. Alastalo, K. Jaakkola, and H. Seppä, “Variable antenna load for transmitter efficiency improvement,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1666–1672, August 2007.
[2] W. C. E. Neo, Y. Lin, X.-D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, September 2006.
[3] J.-S. Fu and A. Mortazawi, “Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3239–3244, December 2008.
[4] J.-S. Fu and A. Mortazawi, “A tunable matching network for power amplifier efficiency enhancement and distortion reduction,” IEEE MTT-S International Microwave Symposium Digest, pp. 1151–1154, June 2008.
[5] H. M. Nemati, C. Fager, U. Gustavsson, R. Jos, and H. Zirath, “Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1110–1118, May 2009.
[6] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee, and K.T. Kornegay, “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1034–1048, May 2011.
[7] H. T. Jeong, H. S. Lee, I. S. Chang, and C. D. Kim, “Efficiency enhancement method for high-power amplifiers using a dynamic load adaptation technique,” in 2005 IEEE MTT-S International Microwave Symposium Digest, pp. 2059–2062, June 2005.
[8] G. Leuzzi and C. Micheli, “Variable-load constant efficiency power amplifier for mobile communication applications,” 33rd Proceeding of European Microwave Conference, pp. 375–377, October 2003.
[9] K. Yang, G. I. Haddad, and J. R. East, “High-efficiency class-A power amplifiers with a dual-bias-control scheme,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1426–1432, August 1999.
[10] N. Wang, V. Yousefzadeh, D. Maksimović, S. Pajić, and Z. B. Popović, “60% efficient 10-GHz power amplifier with dynamic drain bias control,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1077–1081, March 2004.

[11] B. Sahu and G.A. Rincon-Mora, “A high efficiency WCDMA RF power amplifier with adaptive, dual-mode buck-boost supply and bias-current control,” IEEE Microwave Wireless Component Letters, vol. 17, no. 3, pp. 238–240, March 2007.
[12] Y.-S. Jeon, J. Cha, and S. Nam, “High-efficiency power amplifier using novel dynamic bias switching,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 690–696, April 2007.
[13] M. Iwamoto, A.Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472–2479, December 2001.
[14] Y. Yang, J. Cha, B. Shin, and B. Kim, “A fully matched N-way Doherty amplifier with optimized linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 986–993, March 2003.
[15] J. Kang, D. Yu, K. Min, and B. Kim, “A ultra-high PAE Doherty amplifier based on 0.13-mm CMOS process,” IEEE Microwave and Wireless Component Letters, vol. 16, no. 9, pp. 505–507, September 2006.
[16] M. J. Pelk, W. C. E. Neo, J. R. Gajadharsing, R. S. Pengelly, and L. C. N. de Vreede, “A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1582–1591, July 2008.
[17] Y.-S. Lee, M.-W. Lee, and Y.-H. Jeong, “Unequal-cells-based GaN HEMT Doherty amplifier with an extended efficiency range,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 8, pp. 536–538, August 2008.
[18] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244–1255, April 2005.
[19] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High efficiency envelope tracking W-CDMA base-station amplifier using GaN HFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 11, pp. 3848–3856, November 2006.
[20] K. Takahashi, S. Yamanouchi, T. Hirayama, and K. Kunihiro, “An envelope tracking power amplifier using an adaptive biased envelope amplifier for WCDMA handsets,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 405 – 408, June 2008.
[21] D. Cox, “Linear amplification with nonlinear components,” IEEE Transactions on Communications, vol. 22, no. 12, pp. 1942–1945, December 1974.
[22] F. H. Raab, “Efficiency of outphasing RF power-amplifier systems,” IEEE Transactions on Communications, vol. 33, no. 10, pp. 1094–1099, October 1985.
[23] B. Stengel and W. R. Eisenstadt, “LINC power amplifier combiner method efficiency optimization,” IEEE Transactions on Vehicular Technology, vol. 49, no. 1, pp. 229–234, January 2000.
[24] I. Hakala, D. K. Choi, L. Gharavi, N. Kajakine, J. Koskela, and R. Kaunisto “A 2.14-GHz Chireix outphasing transmitter,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 2129–2138, June 2005.
[25] S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, and A. Abidi, “An outphasing power amplifier for a software-defined radio transmitter,” IEEE International Solid-State Circuits Conference Digest, pp. 568, 569, and 636, February 2008.
[26] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, “L-band transmitter using Kahn EER technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2220–2225, December 1998.
[27] D. Su and W. J. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp.
[28] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, December 2004.
[29] M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebek, “A polar modulator transmitter for GSM/EDGE,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2190–2199, December 2004.
[30] R. B. Staszewski, J. L. Wallberg, S. Rezeq, C.-M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469–2482, December 2005.
[31] A. W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1133–1141, May 2006.
[32] F. Carrara, C. D. Presti, and G. Palmisano, “A 2.4-GHz 24-dBm SOI CMOS power amplifier with on-chip tunable matching network for enhanced efficiency in back-off,” Proceedings of ESSCIRC, pp. 176–179, September 2009.
[33] H. Kim, Y. Yoon, O. Lee, K. H. An, D. H. Lee, W. Kim, C.-H. Lee, and J. Laskar, “A fully integrated CMOS RF power amplifier with tunable matching network for GSM/EDGE dual-mode application,” IEEE MTT-S International Microwave Symposium Digest, pp. 800–803, May 2010.

[34] Y. Yoon, J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J. S. Kenney, “A dual-mode CMOS RF power amplifier with integrated tunable matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp.77–88, Jan 2012.
[35] Y.-C. Lee, “Varactor-based and switch-based tunable matching networks for power amplifier efficiency enhancement,” Master dissertation, National Central University, 2011.
[36] C. Huang, K. Buisman, L. K. Nanver, F. Sarubbi, M. Popadic, T. L. M. Scholtes, H. Schellevis, L. E. Larson, and L. C. N. de Vreede, “A 67 dBm OIP3 multistacked junction varactor,’’ IEEE Microwave Wireless Comp. Lett., vol. 18, no. 11, pp. 749–751, November 2008.
[37] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, “Improving the linearity of ferroelectric-based microwave tunable circuits,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 2, pp. 354–360, Feb 2007.
[38] J.-S. Fu, “Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph.D. dissertation, The University of Michigan, 2009.
[39] K. Chen, and D. Peroulis, “Design of adaptive highly efficient GaN power amplifier for octave-bandwidth application and dynamic load modulation,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1829–1839, June 2012.
[40] C.M. Andersson, D. Gustafsson, K. Yamanaka, E. Kuwata, H. Otsuka, M.Nakayama, Y. Hirano, I. Angelov, C. Fager, and N. Rorsman, "Theory and design of class-J power amplifiers with dynamic load modulation," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 3778–3786, Dec 2012
[41] P.-C. Wang, “Power amplifier efficiency enhancement using tunable load and area resizing techniques,” Master dissertation, National Central University, 2012.
[42] Y.-C. Lin, “Design and fabrication of distributed analog phase shifter,” Master dissertation, National Central University, 2011.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2013-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明