博碩士論文 100521123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.14.255.58
姓名 曾星翰(Hsing-Han Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 提高以模擬基礎之搜尋效率的全域性方程式設計參數空間化簡方法
(Global Equation-Based Design Space Reduction Method for Efficient Simulation-Based Optimization)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 典型的類比電路自動化設計方法大致可分為兩大類:模擬基礎
(simulation-based)以及方程式基礎(equation-based)方法。模擬基礎的方法有高度的準確性,但需要消耗大量的模擬時間。方程式基礎方法雖然執行速度快,但因為估計公式無法考慮到較高階的電路效應使得結果不準確。因此,本論文提出一套結合方程式基礎與模擬基礎優點的類比電路自動化設計方法。利用本論文提出的「全域性方程式設計參數空間化簡方法」,能快速地縮減設計參數空間,留下小部分最佳解可能存在的區域。之後,再用模擬基礎的最佳化方法,對剩下的小部分區域作搜尋。在實驗中,所提出的演算法用於兩級式運算放大器自動化設計與鎖相迴路行為模型參數設計上。在第一階段的演算法中,原本的設計參數空間被化簡為小範圍的設計參數空間,然後再用模擬基礎的搜尋方法對化簡後的設計參數空間作搜尋。從實驗結果可以看出,提出的演算法能有效地提高模擬基礎最佳化方法的效率,且結果也保有高度的準確性。
摘要(英) Traditional analog design automation approaches can be classified into two categories. One is simulation-based optimization. It has high accuracy but requires more simulation time to find the global optimal solution. The other is equation-based optimization. It has short execution time but the accuracy is often limited due to the simplified equations. In this thesis, a combined method is proposed to take the advantages of both simulation-based and equation-based approaches for analog design automation. By using the proposed “global equation-based design space reduction” method, the design space with the global optimal can be simplified to a small region quickly in the first stage of the proposed algorithm. Then, simulation-based optimization is applied to search the small region to accurately identify the global optimal point. As shown in the experimental results on several analog circuits, the proposed method has higher efficiency than traditional global search approaches without sacrifice on accuracy.
關鍵字(中) ★ 類比電路自動化設計 關鍵字(英)
論文目次 摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
1 第一章、緒論 1
1-1 研究動機 1
1-2 相關研究 3
1-3 論文結構 8
2 第二章、背景 9
2-1 單純形基礎最佳化方法 9
2-1-1 單純形定義 9
2-1-2 演算法參數定義 10
2-1-3 單純形取樣與切割 10
2-1-4 初始分割 11
2-1-5 最佳化流程 13
2-1-6 實驗結果 14
2-1-7 演算法總結 15
2-2 gm/ID兩級式運算放大器效能估測方法 16
2-2-1 兩級式放大器估測公式 16
2-2-2 電晶體操作偏壓限制 17
2-2-3 gm/ID方法 18
2-2-4 gm/ID的特性 19
2-2-5 線性迴歸(regression) 21
3 第三章、 24
3-1 演算法主要想法 24
3-2 演算法流程 25
3-2-1 縮減單純形 26
3-2-2 蒐集單純形 28
3-3 演算法驗證 28
3-4 提高模擬基礎搜尋方法效率 30
4 第四章、實驗結果與分析 31
4-1 兩級式運算放大器自動化設計 31
4-2 實驗環境與方法 32
4-2-1 模擬退火演算法參數設定 34
4-2-2 放大器設計參數範圍 34
4-2-3 模擬退火演算法搜尋間隔 35
4-2-4 實驗三第一階段演算法停止條件 35
4-2-5 實驗三第一階段目標效能設定 36
4-3 實驗結果與討論 37
4-3-1 規格一實驗結果 37
4-3-2 規格二實驗結果 39
4-4 鎖相迴路行為模型參數設計 41
4-4-1 實驗流程與實驗參數設定 42
4-4-2 實驗結果 43
5 第五章、結論 45
6 參考文獻 46
參考文獻 [1] W. T. Nye,E. Polak and A. Sangiovanni-Vincentelli, “DELIGHT: An optimization-based computer-aided design system,” IEEE International Symposium on Circuits and Systems,pp. 851-855, 1981.
[2] M. Hershenson, S. P.Boyd andT.H.Lee, “Automated design of folded-cascode op-amps with sensitivity analysis,” IEEE International Conference on Electronics, Circuits and Systems, vol.1, pp.121-124,1998.
[3] L. Dai and R. Harjani, “CMOS switched-op-amp-based sample-and-hold circuit,” IEEE Journal of Solid-State Circuits, vol.35, no.1, pp. 109-113, 2000.
[4] G. Espinosa-Flores-Verdad and R. Salinas-Cruz. “Symmetrically compensated fully differential folded-cascode OTA,” Electronic Letters. vol. 35, no. 19, pp. 1603-1604, 1999.
[5] M. Kayal, ”Transistor-Level Analog IC Design,” Short Course Lecture Note, EPFL, Lausanne, Switzerland, 2004.
[6] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “Automatic DeviceSizing in Analog Circuit Design,”National Conference Radio Science(RVK), pp. 187-191, 2002.
[7] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “Optimization-Based Device Sizing in Analog Circuit Design,” Swedish System-on-Chip Conference, Falkenberg, Sweden, 2002.
[8] E. Hjalmarson, R. Hägglund, and L. Wanhammar, “An Optimization-Based Approach for Analog Circuit Design,” European Conferenceon Circuit Theory Design, pp. 369-372, 2003.
[9] E. Hjalmarson, R. Hägglund, and L. Wanhammar, “A Design Platformfor Computer-Aided Design of Analog Amplifiers,”Swedish System-on-Chip Conference, Eskilstuna, Sweden, 2003.
[10] R. Hägglund, E. Hjalmarson, and L. Wanhammar, “A Design Path forOptimization-Based Analog Circuit Design,” The Midwest Symposium on Circuits and Systems, pp. 287–290, 2002.
[11] F. El-Turky and E.E. Perry, “BLADES: an arrificial intelligence approach to analog circuit design”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp. 680-692, 1989.
[12] J. Mahattanakul, J. Chutichatuporn, “Design Procedure for Two-Stage CMOS OpampWith Flexible Noise-Power Balancing Scheme,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 52, no. 8, pp. 1508-1514, 2005.
[13] C.-W. Lin, P.-D. Sue, Y.-T. Shyu, S.-J Chang, “A Bias-Driven Approach for Automated Design of Operational Amplifiers,” International Symposium on VLSI Design, Automation and Test , pp. 118-121, 2009.
[14] Y.-T.Shyu, C.-W. Lin, Jin-Fu Lin and Soon-Jyh Chang, “A gm/ID-based synthesis tool for pipelined analog to digital converters,” International Symposium on VLSI Design, Automation and Test, pp 299-30, 2009.
[15] P. Mandal, V. Visvanathan, “CMOS Op-Amp Sizing Using a Geometric Programming Formulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 1, pp. 22-38, 2001.
[16] M.delM.Hershenson, S.P. Boyd, T.H.Lee, “Optimal design of a CMOS op-amp via geometric programming,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 1, pp. 1-21, 2001.
[17] M.H Maghami., F. Inanlou, R. Lotfi, “Simulation-Equation-Based Methodology for Design of CMOS Amplifiers Using Geometric Programming,” IEEE International Conference on Electronics, Circuits and Systems, pp.360-363, 2008.
[18] T. Kahookar Toosi, E. Zhian Tabasy, H. Sarbishaei, R. Lotfi, "ISECAD: An Iterative Simulation-Equation-Based Opamp-Design CAD Tool," IEEE International Symposium on Circuits and Systems, 2006.
[19] J. Yuan, N. Farhat, and J. Van der Spiegel, "GBOPCAD: a synthesis tool for high-performance gain-boosted opamp design," IEEE Transaction on Circuits and Systems-I, vol. 52, no. 8, pp.1535-1544, Aug. 2005.
[20] C. D. Perttunen, “A nonparametric global optimization method using the rank transformation,” IEEE Conference on Decision and Control, vol. 1, pp.888-893, Dec. 1989.
[21] C. D. Perttunen, “A computational geometric approach to feasible region division in constrained global optimization” IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp.585-590, 1991.
[22] B.Razavi, “Design of analog CMOS integrated circuits”, McGraw-Hill Higher Education, 2001
[23] F. Silveira, D. Flandre, P.G.A. Jespers, ” A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9, pp. 1314-1319, 1996.
[24] W.Gao,R.Hornsey, “A power optimization method for CMOS op-amps using sub-space based geometric programming,” Design, Automation & Test in Europe Conference & Exhibition, pp. 508-513, 2010.
[25] 詹立宇,“可改善幾何演算法之精準度的電壓趨動運算放大器自動化設計方法,” 國立中央大學電機工程研究所碩士論文, July 2011
[26] 郭晉誠, “建立考慮電源雜訊之鎖相迴路行為模型” 國立中央大學電機工程研究所碩士論文, July 2005
指導教授 劉建男(Chien-Nan Liu) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明