博碩士論文 100522033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:44.192.26.60
姓名 馬萬鐸(Wan-Duo Ma)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於保護影像中直線結構的細縫裁減系統
(A Line Structure Preservation in Image and Video Re-targeting based on Seam Carving)
相關論文
★ 基於edX線上討論板社交關係之分組機制★ 利用Kinect建置3D視覺化之Facebook互動系統
★ 利用 Kinect建置智慧型教室之評量系統★ 基於行動裝置應用之智慧型都會區路徑規劃機制
★ 基於分析關鍵動量相關性之動態紋理轉換★ 建基於開放式網路社群學習環境之社群推薦機制
★ 英語作為外語的互動式情境學習環境之系統設計★ 基於膚色保存之情感色彩轉換機制
★ 一個用於虛擬鍵盤之手勢識別框架★ 分數冪次型灰色生成預測模型誤差分析暨電腦工具箱之研發
★ 使用慣性傳感器構建即時人體骨架動作★ 基於多台攝影機即時三維建模
★ 基於互補度與社群網路分析於基因演算法之分組機制★ 即時手部追蹤之虛擬樂器演奏系統
★ 基於類神經網路之即時虛擬樂器演奏系統★ 即時手部追蹤系統以虛擬大提琴為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著時代演進,科技日益進步,人們對於電子產品以及3C產品越來越依賴。從以前人們拿著傻瓜相機或是具有底片的相機拍照的時代,轉變成現在的人手一台數位相機、數位單眼相機或是智慧型手機,由於3C產品的便利性,一般人即可拍出專業照片。但一張尺寸固定的照片,要放在不同比例的裝置會造成圖片內容扭曲。就好比iPhone為例,iPhone的螢幕尺寸為3比2,如果要將比例1比1或解析度640*480的圖片放在iPhone觀看,基本上會造成影像內容扭曲。
在影像處理研究領域中,解決此問題的技術為影像尺寸縮減。例如Scaling、Cropping和Warping。Scaling 和 Cropping兩者皆可以簡單且迅速地達成圖片壓縮,但前者會把影像中主要的物件壓縮,破壞圖片結構;而後者雖能依照使用者裁切出想要的區域,然而也會將其他重要物件摒棄。相較之下,Warping可以達到內容感知影像壓縮,但是仍具有時間消耗量大的問題。
Seam Carving是一個有效率且新穎的方法,藉由刪除或插入seam來完成影像縮減或擴增,達到內容感知影像壓縮。但此方法容易破壞影像中直線及物體邊緣的結構。因此,本篇論文著重實作Seam Carving技術,同時也強調影像中直線結構與物體邊緣的保護,來達成美觀的結果。此外,也將此研究延伸至影片壓縮,因為影格間的連續性,導致要處裡演算法更為複雜。實驗部分將會展示出壓縮後不同大小的影片及影像結果來驗證此論文所提出方法的可行和有效性。
摘要(英) With the various development of technology, there is getting more people use their digital or 3C products, which can enlarge and enrich our live. For instance, people used to take a photo with range finder camera but now it is popular for using digital camera or digital single lens reflex camera, even using smart phone. Unfortunately, it is hard to fit the image in different kinds of devices with various ratios. Take the iPhone with screen ratio for example, the height and width ratio is 3:2; people cannot put the image such as 1:1,640*480 those kinds of image into iPhone without distortion in visualization. The solution is to resize the image to the target ratio.
There are several kinds of method to resize the image such as Scaling, Cropping, or Warping. Scaling and Cropping are the fast method to achieve such goal. But the previous one may distort the important object. Although cropping is the fast way to crop the interest area that the user wants, it may lose the other information too. Warping is another way to resize image, but it is not so effective as well.
There is an effective and novel approach called seam carving that could achieve content-aware image resizing. Users may reduce or expand the height and width by themselves. But it may distort the line detection and object shape easily. In this thesis, we focus our research on improving the all line and shape structure in an image, trying to avoid seam goes through that kinds of things. Moreover, we discuss the seam carving on video resizing, which is more complicated than image resizing. At last, the experiments are carried out on different image/video frame with different number of seams. The results demonstrate the prominence of our method.
關鍵字(中) ★ 重新定位
★ 影片
★ 影像細縫裁切
★ 直線偵測
★ 內容感知
關鍵字(英) ★ Retargeting
★ Video/Image Seam Carving
★ Line Detection
★ Content Aware
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective 2
1.3 System Pipeline 3
1.4 Thesis Structure 5
Chapter 2 Related Works 6
2.1 Filter 6
2.2 Canny Line Detection 9
2.3 Hough Transform 12
2.4 Image Re-targeting 15
Chapter 3 Seam Carving 18
3.1 Image Seam Carving 18
3.1.1 System Overview 18
3.1.2 Gradient Map 19
3.1.3 Energy Map 20
3.1.4 Remove Seam 25
3.2 Video Seam Carving 27
3.2.1 System Overview 27
3.2.2 Motion Object Protection 28
3.2.3 Video Motion and Temporal Coherence 35
Chapter 4 Line Structure Detection and Preservation 39
4.1 System Overview 39
4.2 Line Preservation in Image Seam Carving 46
4.3 Line Preservation in Video Seam Carving 49
4.4 Vanishing Point Maintenance 52
Chapter 5 Experiments and Discussion 54
5.1 Experiments in Images 54
5.2 Experiments in Video 61
Chapter 6 Conclusions and Future Works 63
6.1 Conclusions 63
6.2 Future Works 64
References 65
參考文獻 [1] S. Avidan, and A. Shamir, “Seam carving for content aware image resizing”, ACM Transactions on Graphics (TOG), vol. 26, no. 3, 2007, p. 10.
[2] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for video retargeting”, ACM Transactions on Graphics (TOG), vol. 27, no. 3, 2008.
[3] Canny, J. F., “A Computational Approach to Edge Detection”, Pattern Analysis and Machine Intelligence, IEEE, vol. 8, no. 6, Nov. 1986, pp. 679-698.
[4] R. O. Duda, P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Communications of the ACM, vol. 15, no. 1, Jan. 1972, pp. 11-15.
[5] B. Suh, H. Ling, B. B. Bederson, D. W. Jacobs, “Automatic Thumbnail Cropping and its Effectiveness”, ACM symposium on User interface software and technology, 2003, pp. 95-104.
[6] L. Itti., C. Kopf, E. Niebur, “A model of saliency-based visual attention for rapid scene analysis”, Pattern Analysis and Machine Intelligence, vol. 20, no. 11, Aug. 2002, pp. 1254-1259.
[7] T. Zhu, W. Wang, P. Liu, Y. Xie, “Saliency-based Adaptive Scaling for Image Retargeting”, Computational Intelligence and Security, Dec. 2011, pp. 1201-1205.
[8] J. S. Kim, J. H. Kim, C. S. Kim, “Adaptive Image and Video Retargeting Technique Based on Fourier Analysis”, Computer Vision and Pattern Recognition, Jun. 2009, pp. 1730-1737.
[9] Y. S. Wang, C. L. Tai, O. Sorkine, T. Y. Lee, “Optimizedscale-and-stretch for image resizing”, ACM Transactions on Graphics (TOG),vol. 27, no. 5, Dec. 2008.
[10] Y. S. Wang, H. B. Fu, O. Sorkine, T. Y. Lee, “Motion-based temporal coherence for video resizing”, ACM Transactions on Graphics (TOG), vol. 25, no. 5, 2009.
[11] Y. S. Wang, H. C. Lin, O. Sorkine, T. Y. Lee, ”Motion-basedvideo retargeting with optimized crop-and-warp”, ACM Transactions on Graphics (TOG), vol. 29, no. 4, Jul. 2010.
[12] R. Gal, O. Sorkine, D. Cohen-Or, “Feature-aware texturing”, Eurographics conference on Rendering Techniques, 2006, pp. 297-303.
[13] L.Wolf, M. Guttmann, D. Cohen-Or, “Non-homogeneouscontent-driven video-retargeting”, IEEE International Conference on Computer Vision, pp. 1-6, 2007.
[14] M. Rubinstein, A. Shamir, and S. Avidan, “Multi-operator media retargeting”, ACM Transactions on Graphics (TOG), vol. 28, no. 3, 2009.
[15] J. Kiess, S. Kopf, B. Guthier, W. Effelsberg, “Seam carving with improved edge preservation”, Multimedia on Mobile Devices,Proceedings of IS&T/SPIE Electronic Imaging (EI), vol. 7542, 2010, pp. 11.
[16] S. Montabone, A. Soto, “Human detection using a mobile platform and novel features derived from a visual saliency mechanism”, Image and Vision Computing, vol. 28, no. 3, Mar. 2010, pp. 391-402.
[17] R. Achanta, S. Susstrunk, “Saliency detection for content-aware image resizing”, Image Processing (ICIP), IEEE, Nov. 2009, pp. 1005-1008
[18] R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, “Frequency-tuned salient region detection”, Computer Vision and Pattern Recognition, IEEE, Jun. 2009, pp. 1597-1604.
[19] V. Setlur, S. Takagi, R. Raskar, M. Gleicher, B. Gooch, “Automatic image retargeting”, MUM ’05 Proceedings of the 4th international conference on Mobile and ubiquitous multimedia, 2005, pp. 59-68
[20] D. Comaniciu, P. Meer, “Mean shift: a robust approach toward feature space analysis”, Pattern Analysis and Machine Intelligence, IEEE, vol. 24, no. 5, May 2002, pp. 603-619
[21] A. Srivastava, K. K. Biswas, “Fast Content Aware Video Retargeting”, International Journal of Computer Applications, vol. 40, Nov. 2012.
[22] B. Yan, K. sun, L. Liu, “Matching area based seam carving for video retargeting”, Circuits and Systems for Video Technology, IEEE, vol. 23, no. 2, Feb. 2013, pp. 302-310.
[23] G. X. Zhang, M. M. Cheng, S. M. Hu, “A Shape-Preserving Approach to Image Resizing”, The Eurographics Association and Blackwell, vol. 28, no. 7, Oct. 2009, pp. 1897-1906.
[24] W. D. Ma, H. H. Chang, T. K. Shih, Y. C. Chou, “Seam carving based on improved line detection”, Intelligent Signal Processing and Communications Systems (ISPACS), Nov. 2012, pp. 498-503.
[25] S. Kopf, J. Kiess, H. Lemelson, W. Effelsberg“FSCAV: Fast Seam Carving for Size Adaptation of Videos”, ACM international conference on Multimedia, pp. 321-330
指導教授 施國琛(Timothy K. Shih) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明