博碩士論文 100523052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.14.83.223
姓名 尹遜儒(Xun-Ru Yin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems
(子區塊分割於感知無線電系統之稀疏頻譜偵測)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分
★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統
★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬
★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬
★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬
★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬★ 波束成形與資源分配於無線充電蜂巢式網路之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 感知無線電(Cognitive radio)為一項新興通訊技術,藉由偵測未被充分利用的頻譜,我們可以有效改善現有頻譜使用效率。一般而言,頻譜的偵測需滿足耐奎斯取樣(Nyquist sampling)定理,方能達到有效的頻譜偵測效能。因而在寬頻頻譜感知應用上,感知無線電的頻譜偵測運算複雜度將大幅增加,若為降低複雜度而減少頻譜偵測取樣點將造成頻譜偵測的準確度下降。在寬頻感知系統中,主用戶(Licensed users)頻帶的使用往往呈現稀疏分布,壓縮感測(Compressive sensing)技術可以有效克服上述問題,將寬頻訊號做適度壓縮取樣以減低運算複雜度,同時利用訊號在頻域上稀疏特性來有效提升頻譜偵測準確率。
於此篇論文中,我們所考慮的頻譜偵測為多子載波偵測問題,且利用稀疏訊號的事前機率與接收到壓縮的訊號,將問題表示成複合假設檢定(Composite Hypothesis Testing),算出概似機率比(Likelihood ratio)與門檻值(Threshold)比較得到頻譜偵測的結果。為了簡化計算的複雜度,我們將子區塊分割(Sub-block partition)的方法應用到我們頻譜偵測中,子區塊分割的方法為利用偵測少數的子載波數並將剩餘的子載波當成干擾。最後藉由模擬結果來看,我們所提出的法得到之頻譜偵測效能是可靠的,利用此方法次用戶(Unlicensed users)必須在複雜度與頻譜偵測的準確度達到平衡以發揮頻譜偵測最大效能。
摘要(英) The current static spectrum allocation policy is inefficient because some of the outdated licensed bands are often underutilized. Recently, cognitive radio (CR) has been emerged as a promising way to improve the spectrum utilization by sensing the vacant or sparse spectrum of the licensed bands and sharing the spectrum with the unlicensed users. We all know from the Nyquist sampling theorem that the sampling rate should be at least two times faster than the signal bandwidth. However, the increase of the sampling rate will cause high implementation cost, particularly for wideband spectrum sensing. Compressive sensing is an effective remedy to overcome this problem at the sub-Nyquist rate by utilizing the sparse property of those underutilized licensed bands.
In this thesis, the occupancy detection problem is formulated as a composite hypothesis testing problem under a Bayesian framework for which the a-prior probability of the sparse signals and the compressive sensing of the received signals are jointly taken into account. The whole considered spectrum is divided into multiple subcarriers, and the sparse spectrum detection is casted as a multi-subcarrier detection problem in time domain. To simplify the computation complexity, we apply the idea of the sub-block partition to our proposed detection method, where a joint detection over a smaller number of multiple subcarriers is performed by using the sparse property and treating the remaining subcarriers as interfering terms. In the simulation result, the detection accuracy has a reliable performance and unlicensed users have to make a trade-off between complexity and detection accuracy.
關鍵字(中) ★ 感知無線電
★ 壓縮感知
★ 稀疏
★ 子區塊分割
★ 耐奎斯取樣
★ 複合假設檢定
★ 概似機率比
★ 次用戶
關鍵字(英) ★ Cognitive Radio
★ Compressive
★ Sparse
★ Sub-block Partition
★ Nyquist sampling
★ Composite Hypothesis Testing
★ Likelihood ratio
★ Unlicensed users
論文目次 摘要 .. I
目錄 .. III
圖目錄 . IV
表目錄 .. V
參數表 . VI
第一章 緒論 1
1.1 研究動機與背景 . 1
1.2 文獻探討 . 2
1.3 論文架構 . 3
第二章 感知無線電 4
2.1 合作通訊感知無線電系統 5
2.2 感知無線電挑戰 . 6
2.3 壓縮感測技術 .. 7
第三章 壓縮感知系統模型 . 10
3.1 二位元相位偏移鍵調變之稀疏訊號模型 . 10
3.2 雙模混合之稀疏訊號模型 . 11
3.3 通道模型 .. 12
3.4 快速傅立葉轉換矩陣 14
3.5 複數高斯白雜訊 .. 15
第四章 複合假設檢定 16
4.1 複合式假設檢定應用於壓縮感知系統模型 17
第五章 子區塊分割之稀疏頻譜偵測 21
5.1 子區塊分割於二位元相位偏移鍵調變之稀疏頻譜偵測 . 21
5.2 子區塊分割於雙模混合之稀疏頻譜偵測 . 26
第六章 模擬結果與討論 .. 30
第七章 結論 . 39
參考文獻 40
參考文獻 [1] M. L. Ku, Q. C. Chen, S. S. Ghassemzadeh, V. Tarokh, and L. C. Wang, “Service Coverage for Cognitive Radio Networks with Cooperative Relays in Shadowed Hotspot Areas,” in Proc. IEEE WCNC., Mar. 2011, pp. 1759-1764.
[2] Z. Tian and G. Giannakis, “Compressed Sensing for Wideband Cognitive Radios,” in Proc. IEEE ICASSP., Apr. 2007, pp. 1357-1360.
[3] J. H. Liang, Y. Liu, W. J. Zhang, Y. Y. Xu, X. Y. Gan and X. B. Wang, “Joint Compressive Sensing in Wideband Cognitive Networks,” in Proc. IEEE WCNC., Apr. 2007, pp. 1-5.
[4] Y. L. Polo, Y. Wang, A. Pandharipande and G. Leus, “Compressive Wide-band Spectrum Sensing,” in Proc. IEEE ICASSP., Apr. 2009, pp. 2337-2340.
[5] R. G. Baraniuk , “Compressive Sensing,” IEEE Signal Process. Mag., Jul. 2007.
[6] C. J. Emamnuel, “Compressive Sampling,” in Proc. Int. Congress of Math., 2006.
[7] S. H. Ji, Y. Xue and L. Carin, “Baysian Compressive Sensing,” IEEE Trans. Signal Process., vol. 56, pp. 2346-2356, Jun. 2008.
[8] D. Baron, M. F. Duarte, S. Sarvotham, M. B. Wakin and R. G. Baraniuk, “An Information-Theoretic Approach to Distributed Compressed Sensing,” in Proc. Allerton Conf. Commun., Control, and Comput., Sept. 2005.
[9] Z. Z. Yu, S. Hoyos and B. M. Sadler, “Mixed-signal Parallel Compressed Sensing and Reception for Cognitive Radio," in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Mar. 2008, pp. 3861-3864.
[10] E. J. Candes and T. Tao, “Near-Optimal Signal Recovery from Random Projections and Universal Encoding Strategies,” IEEE Trans. on Inform. Theory, vol. 52, pp. 5406-5425, Dec. 2006.
[11] B. S. M. R. Rao, S. Chatterjee, B. Ottersten, “DETECTION OF SPARSE RANDOM SIGNALS USING COMPRESSIVE MEASUREMENTS,” IEEE ICASSP, Mar. 2012, pp. 3257-3360.
[12] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
[13] E. Cand`es and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies?,” IEEE Trans. Inform. Theory., vol. 52, no. 12, pp. 5406–5425, Dec 2006.
[14] D. Donoho and J. Tanner, “Neighborliness of Randomly Projected Simplices in High Dimensions,” in Proc. Nat. Acad. Sci., pp. 9452-9457, Mar. 2005.
[15] D. Donoho, “High-dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension,” Discrete Comput. Geomet., Mar. 2006, vol. 35, pp. 617-652.
[16] A. Ghasemi and E. Doura, “Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments,” in Proc. IEEE Symp. on DySPAN, Nov. 2005, pp. 131-136.
[17] S. S. Chen, D. L. Donoho and M. A. Saunders, “Atomic Decomposition by Basis Pursuit,” SIAM Journal on Scientic Comput., vol. 43, pp. 129-159, Feb. 1996.
[18] C. La, and M. N. Do, “Signal Reconstruction using Sparse Tree Representation.” In Proc. SPIE Conf. Wavelet App., Aug. 2005.
[19] E. J. Candes, M. B. Wakin and S. P. Boyd, “Enhancing Sparsity by Reweighted ℓ1 Minimization,” in Proc. SSP Conf., Dec. 2007, pp. 877-905.
[20] C. La and M. Do, “Signal Reconstruction using Sparse Tree Representations, “ SPIE Wavelets XI, Sept. 2005, vol. 5914, pp. 59140-59140.
[21] D. Needell and R. Vershynin, "Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit," math .NA, Mar. 2008.
[22] Zayyani, H. , Babaie-Zadeh, Massoud and Jutten, C. , “Source Estimation in Noisy Sparse Component Analysis,” Digital Signal Process.,2007 15th International Conference on, July 2007, pp.219-222.
[23] S. P. Chepuri, G. Leus and R. de Francisco, “Multiple hypothesis testing for compressive wideband sensing,” IEEE SPAWC, Jun. 2012, pp.590-594, Jun.
[24] G. Zhang, J. Liu, L. Chen, W. D. Guo, “Efficient Energy Detector for Spectrum Sensing in Complex Gaussian Noise,” IEEE WCSP, Oct. 2010, pp.1-4 Oct.
[25] Z. Wang, G. R. Arce and B. M. Sadler, "Subspace compressive detection for sparse signals," IEEE ICASSP 2008, Apr. 2008, pp.3873-3876.
[26] M. L. Ku, Q. C. Chen, S. S. Ghassemzadeh, V. Tarokh, and L. C. Wang, “Service Coverage for Cognitive Radio Networks with Cooperative Relays in Shadowed Hotspot Areas,” in Proc. IEEE WCNC., Mar. 2011, pp. 1759-1764.
[27] J. H. Liang, Y. Liu, W. J. Zhang, Y. Y. Xu, X. Y. Gan and X. B. Wang, “Joint Compressive Sensing in Wideband Cognitive Networks,” in Proc. WCNC, Apr. 2010, pp.1-5.
[28] A. Ghasemi and E. S. Sousa, “Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Design Trade-offs," IEEE Commun. Mag., Apr. 2008, vol.46, pp.32-39.
[29] E. Candes, M. Rudelson, T. Tao and R. Vershynin, “Error Correction via Linear Programming,” in Proc. IEEE Sym. Foundations of Computer Science, Oct. 2005, pp.668-681.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明