博碩士論文 100581007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.221.240.142
姓名 廖文甲(Wen-Chia Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵異質接面場效電晶體動態導通特性受電壓應力劣化之研究
(The Study of Dynamic Performance Degradation in AlGaN/GaN HFETs with High Voltage Off-state Stress)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 電子式基因序列偵測晶片之原型
★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析
★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來的研究指出,具有寬能隙的氮化鎵材料有機會提升功率電晶體的崩潰特性,使其具有較低的導通電阻,且更適合應用於高頻系統之中。然而動態導通電阻的特性限制了目前氮化鎵電晶體的發展。
所謂的動態導通電阻,是指當電晶體受到電壓應力之後,在導通的瞬間會具有較差的導通特性,造成這樣問題的原因已有大量的研究探討,且被歸因於相當多樣且複雜的因子,這樣複雜的問題,導致嘗試解決元件動態電阻問題時,難以找到關鍵因子以有效地提出解決辦法。
本論文嘗試提出以一系統化的手法分析造成動態電阻的起因;首先討論虛擬閘極的效應,藉由兩極同步電壓切換的技術,建立元件受電壓應力後的暫態 Id – Vg 曲線,藉此以定義元件臨限電壓隨鬆弛時間的變化,此變化可被進一步的分析是與磊晶層有關的缺陷形式。第二個部分連結了漏電流與動態電阻,結果發現閘極漏電流引發磊晶相關缺陷造成的動態電阻劣化可藉由閘極絕緣層大幅改善。更進一步的,改善閘極絕緣層與氮化鎵材料系統間接面缺陷密度的結構也被提出,藉由使用原子層沉積系統沉積二氧化鋁在經高溫氧化過氮化鋁材料上,可有效降低接面缺陷密度至1.4 × 1012 to 2.6 × 1013 eV-1•cm-3。
元件在承受高電壓應力後,被離子化缺陷的密度分布狀況可藉由分析暫態電容對電壓的關係得到,結果發現,元件在承受過高電壓應力後,被離子化的缺陷密度與電場分佈有明顯的相依關係;且當電壓應力較低時,被離子化的缺陷多分佈在電場集中處,而當高的電壓應力作用在元件上時,一個廣泛範圍的缺陷會被離子化,導致嚴重的動態電阻裂化。此裂化可藉由優化金屬長板的設計分散集中電場來獲得改善。
為了解到造成元件動態電阻嚴重裂化的根本原因,三電極同步切換的技術被提出,用以研究元件緩衝層內缺陷與動態電阻裂化的關聯,結果發現,當元件承受汲極電壓應力時,若同時施以正向的基板偏壓將導致動態電阻裂化比例上升,且延長了回復所需要的時間,此趨勢與增大汲極電壓的結果相同,從模擬的結果看來,正向的基板偏壓會壓低緩衝層的導電帶能量,缺陷被填入的機率上升,進而影響動態電阻的裂化行為。
摘要(英) The degradation in dynamic on-state performance is a great concern to limit the application of GaN-based power transistors and is regarded as one of the most critical issues to be solved for high power switching applications. When a GaN power transistor was operated as a high frequency on and off switch, the off-state bias duration serves as a filling pulse and causes an increase in RDS,on.
A measurement methodology involving the synchronous switching of VG and VD was proposed for determining transient Id-Vg curves after an AlGaN/GaN HFET endures high VDS off-state stress. The measurement results indicated slow electron detrapping behavior. The trap profile was determined as (EC–0.6 eV), an acceptor-like trap was widely observed in the AlGaN/GaN HFETs and some research results have indicated that this trap originates from epitaxial defects. The proposed method is further used to study the influence of the trap in AlGaN/GaN HFETs with different buffer layers: a carbon-doped buffer and an Al0.05Ga0.95N back-barrier layer. Two HFETs demonstrated similar transient behaviors but different trends by enduring various VDS stress level. For a device with a C-doped buffer layer, the amount of threshold voltage shift becomes saturated with increasing VDS stress; however, a device with an Al0.05Ga0.95N back-barrier layer does not. A simulation tool was used to analyze the trap behaviors and close agreement was seen between measured and simulated.
The correlation between off-state leakage current and dynamic RDS,on transients in AlGaN/GaN HFETs with and without a gate insulator under various stress conditions was also examined. The RDS,on transients in a Schottky-gate HFET (SGHFET) and a metal-insulator-semiconductor HFET (MISHFET) were observed after applying various VDS stress biases. The gate insulator in the MISHFET effectively reduced the electron injection from the gate, thereby mitigating the degradation in dynamic switching performance. However, at relaxation times exceeding 10 ms, additional detrapping occurred in both SGHFET and MISHFET when the applied stress exceeded a critical voltage level, resulting in resistive leakage current build-up and the formation of hot carriers. These high-energy carriers act as ionized traps in the channel or buffer layers, which subsequently caused additional trapping and detrapping to occur in both HFETs during the dynamic switching test conducted.
Gate insulator is an effective mean to reduce the gate leakage current also alleviate the dynamic degradation. However, additional insulator/semiconductor interface states are introduced and to be considered as another origins to trap electrons. To solve this problem, a AlGaN/GaN heterostructure with in-situ AlN as cap layer is proposed. By depositing ALD-Al2O3 on the proposed structure subjected to high temperature oxidization, the interface state can be reduced and the distribution of Dit is determined to be in the range between 1.4 × 1012 to 2.6 × 1013 eV-1•cm-3, which is an approximately one-order-of-magnitude reduction compared with a structure that is not subjected to the oxidization process.
The use of field plate can effectively reduce the electric-field strength, so the breakdown voltage can be increased and the dynamic degradation can be alleviated. A measurement methodology involving high-voltage C-V was proposed to determine the trapping profile of a stressed AlGaN/GaN HFET. Comparing the curves between initial and stressed C-V measurements revealed that the transient behavior was dominated by ionized acceptor-like traps, and the trapping profile within the high VDS off-state stressed AlGaN/GaN HFET could be deduced. The measurement results also correlated with the degradation in dynamic RDS,on after the transistor was stressed with similar stress conditions. Based on the correlation the deduced trap profiles and dynamic RDS,on degradation, the location with high electric field that determines the major degradation is determined. Finally, a new source field plate is proposed and demonstrated to improve the dynamic performance degradation.
Finally, the proposed were applied to systematically study the trapping behavior in an AlGaN/GaN HFET endures high VDS off-state stress. Transient Id-Vg is investigated to study threshold voltage shift (ΔVth) after stress. However, the amount of ΔVth was used to evaluate the degradation caused by injection carriers into the region underneath gate. This methodology only addresses one part of the current-collapse effect. The second methodology, stressed C-V, was used to extract the trap profile between the gate field plate edge and source field plate edge. Based on the correlation between the trap profiles and dynamic RDS,on degradation, the location with high trap density that determines the major degradation is determined. Lastly, a new three-terminals synchronous switching with substrate bias was proposed to study the influence of buffer traps. Based on energy-band lifting simulated from simulation tool and the broader trap profile extracted from stress C-V measurement, the most possible region to trap carriers and cause degradation in dynamic Ron is the buffer layer between the gate field plate edge and source field plate edge after off-state near breakdown stress.
關鍵字(中) ★ 氮化鋁鎵/氮化鎵異質接面場效電晶體
★ 動態電阻
★ 電流崩塌
關鍵字(英) ★ GaN HFETs
★ Dynamic Ron
★ Current Collapse
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGEMENTS VI
CONTENT VII
LIST OF FIGURES X
LIST OF TABLES XIV
CHAPTER 1 RESEARCH BACKGROUND 1
CHAPTER 2 INTRODUCTION TO GAN-BASED HFETS 6
2.1 Crystal Structure and 2DEG 6
2.2 AlGaN/GaN Heterostructure 7
2.3 AlGaN/GaN HFETs 9
2.4 Dynamic RDS,on Degradation 11
2.5 Summary 12
2.6 Thesis Organization 12
CHAPTER 3 TRANSIENT ID-VG MEASUREMENT AND BACKGATING EFFECT 14
3.1 Introduction 14
3.2 Device Structure 15
3.3 Measurement Setup and Results 15
3.4 Epitaxial Defects Induced Backgating Effect 17
3.5 Time-dependent ΔVTH in HFETs with Different Buffer Layers 19
3.6 TCAD Simulation and Results 21
3.7 Summary 26
CHAPTER 4 GATE LEAKAGE CURRENT INDUCED CURRENT COLLAPSE 27
4.1 Device Structures 27
4.2 Correlation between off-state leakage current and dynamic RDS,on transients 28
4.3 Discussion 33
4.4 Summary 34
CHAPTER 5 THE INFLUENCE OF HIGH TEMPERATURE OXIDIZATION FOR ALGAN/GAN HETEROSTRUCTURE WITH IN-SITU ALN CAP LAYER 36
5.1 Introduction 37
5.2 Frequency- and Temperature-Dependent C-V Measurement and Analysis 38
5.3 Device Structure and Thermal Oxidization Process 43
5.4 C-V Characteristics and Distribution of Energy-Level- Dependent Dit 45
5.5 Summary 49
CHAPTER 6 STRESSED C-V MEASUREMENT TO DEDUCE TRAP PROFILES 50
6.1 Device Structure 50
6.2 Device Characteristics 51
6.3 Initial and Stressed High Voltage C-V Measurement 52
6.4 Analysis 55
6.5 Simulation 58
6.6 Summary 60
CHAPTER 7 INVESTIGATIONS OF DYNAMIC PERFORMANCE BY STRESSED C-V AND DYNAMIC ON-RESISTANCE MEASUREMENTS 61
7.1 Stressed C-V Measurement 61
7.2 Dynamic RDS,on Measurement 63
7.3 Results and Analysis 63
7.4 Discussion 66
7.5 Summary 67
CHAPTER 8 DETERMINING BUFFER TRAPS INDUCED DEGRADATION IN DYNAMIC ON-STATE PERFORMANCE 69
8.1 Device Characteristics 70
8.2 Transient Id-Vg and Threshold Voltage Shift 71
8.3 Stressed C-V Measurement and Localized Trapping Profiles 72
8.4 Three-terminals Synchronous Voltage Switching and Buffer Traps Effect 73
8.5 Summary 76
CHAPTER 9 CONCLUSIONS AND SUGGESTED FUTURE WORKS 78
參考文獻 [ ] U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287, 2008.
[ ] Y. Yanagihara, Y. Uemoto, T. Ueda, T. Tanaka, and D. Ueda, “Recent advances in GaN transistors for future emerging applications”, Phys. Stat. Solidi (A), vol. 206, no. 6, pp.1221, 2009
[ ] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, “A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs”, IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp.1764, 2012
[ ] R. Ren, S. Liu, J. l. Wang, F. h. Zhang, “High Frequency LLC DC-Transformer based on GaN devices and the dead time optimization”, IEEE PEAC, pp. 462, 2014.
[ ] E. S. Hellman, “The Polarity of GaN: A Critical Review”, MRS Internet Journal of Nitride Semiconductor Research, vol. 3, no. 11, pp. 1, 1998.
[ ] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, vol. 56, no. 16, p. R10024, 1997.
[ ] N.-Q. Zhang, B. Moran, S. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, "Kilovolt AlGaN/GaN HEMTs as Switching Devices," physica status solidi (a), vol. 188, no. 1, pp. 213, 2001.
[ ] M. A. Khan, Q. Chen, C. J. Sun, M. Shur, and B. Gelmont, "Two-dimensional electron gas in GaN-AlGaN heterostructures deposited using trimethylaminealane as the aluminum source in low pressure metalorganic chemical vapor deposition," Applied Physics Letters, vol. 67, no. 10, pp. 1429, 1995.
[ ] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction," Applied Physics Letters, vol. 63, no. 9, pp. 1214, 1993.
[ ] D. M. Sathaiya and S. Karmalkar, "Edge Effects on Gate Tunneling Current in HEMTs," Electron Devices, IEEE Transactions on, vol. 54, no. 10, pp. 2614, 2007.
[ ] A. Chini, D. Buttari, R. Coffie, S. Heikman, S. Keller, and U. K. Mishra, "12 W/mm power density AlGaN/GaN HEMTs on sapphire substrate," Electronics Letters, vol. 40, no. 1, pp. 73, 2004.
[ ] S. Karmalkar and U. K. Mishra, "Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate," IEEE Trans. Electron Devices, vol. 48, no. 8, pp. 1515, 2001.
[ ] S. C. Binari, P. B. Klein, and T. E. Kazior, "Trapping effects in GaN and SiC microwave FETs," Proceedings of the IEEE, vol. 90, no. 6, pp. 1048, 2002.
[ ] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors," Applied Physics Letters, vol. 77, no. 2, pp. 250, 2000.
[ ] W. D. Hu, X. S. Chen, F. Yin, J. B. Zhang and W. Lu, "Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors", Journal of Applied. Physics, vol. 105, pp.084502 (2009).
[ ] X. D. Wang, W. D. Hu, X. S. Chen, and W. Lu, “The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs”, IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1393, 2012.
[ ] W. D. Hu, X. S. Chen, Z. J. Quan, C. S. Xia, W. Lu and H. J. Yuan, "Demonstration and dynamic analysis of trapping of hot electrons at gate edge model for current collapse and gate lag in GaN-based high-electron-mobility transistor including self-heating effect", Applied Physics Letters, vol. 89, pp. 243501, 2006.
[ ] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso and P. Moens, “Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage”, IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 782, 2015
[ ] A. M. Wells, M. J. Uren, R. S. Balmer, K. P. Hilton, T. Martin, and M. Missous, “Direct demonstration of the ‘virtual gate’ mechanism for current collapse in AlGaN/GaN HFETs”, Solid-State Electron. Vol. 49, pp. 279, 2005.
[ ] D. W. Cardwell, A. Sasikumar, A. R. Arehart, S. W. Kaun, J. Lu, S. Keller, J. S. Speck, U. K. Mishra, S. A. Ringel, and J. P. Pelz, “Spatially-resolved spectroscopic measurements of Ec  − 0.57 eV traps in AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., vol. 102, pp. 193509, 2013.
[ ] Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, and T. Mizutani, “Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors”, Appl. Phys. Lett., vol. 84, pp. 2184, 2004.
[ ] C. Tang and J. Shi, “Influence of acceptor-like traps in the buffer on current collapse and leakage of E-mode AlGaN/GaN MISHFETs”, Semicond. Sci. Technol., vol. 28, no. 11, pp. 115011, 2013
[ ] M. Tapajna, M. Jurkovic, L. Valik, _. Hascık, D. Gregusova, F. Brunner, E.-M. Cho, and J. Kuzmık, “Bulk and interface trapping in the gate dielectric of GaN based metal-oxide-semiconductor high-electron-mobility transistors”, Appl. Phys. Lett., vol. 102, pp. 243509, 2013.
[ ] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance-Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface”, Jpn. J. Appl. Phys., vol. 50(2), pp. 021001, 2011.
[ ] S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. J. Chen, “Mechanism of PEALD-grown AlN passivation for AlGaN/GaN HEMTs: Compensation of interface traps by polarization charges”, IEEE Electron Device Lett., vol. 34, pp. 193, 2013.
[ ] J. Pernot and P. Muret, “Electronic properties of the EC-0.6 eV electron trap in n-type GaN”, J. Appl. Phys., vol. 103, pp. 023704, 2008.
[ ] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso and E. Zanoni, “Deep-level characterization in GaN HEMTs-Part I: Advantages and limitations of drain current transient measurements”, IEEE Trans. Electron Devices, vol. 60, pp. 3166, 2013.
[ ] S. DasGupta, M. Sun, A. Armstrong, R. J. Kaplar, J. Marinella, J. B. Stanley, S. Atcitty, and T. Palacios, “Slow detrapping transients due to gate and drain bias stress in high breakdown voltage AlGaN/GaN HEMTs”, IEEE Trans. Electron Devices, vol. 59, 2115 (2012).
[ ] D. C. Look, Z.-Q. Fang, and B. Clafin, “Identification of donors, acceptors, and traps in bulk-like HVPE GaN”, J. Cryst. Growth, vol. 281, 143 (2005).
[ ] A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, “Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 84, 374 (2004).
[ ] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, W. Liu, and S. Tripathy, “Identification of deep levels in GaN associated with dislocations”, J. Phys.: Condens. Matter, vol. 16, pp. 6305 (2004).
[ ] G. Y. Lee , H. H. Liu and J. I. Chyi, “High-performance AlGaN/GaN Schottky diodes with an AlGaN/AlN buffer layer”, IEEE Electron Device Lett., vol. 32, pp. 1519 (2011).
[ ] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs”, IEEE Trans. Electron Devices, vol. 48, pp. 560 (2001).
[ ] A. Armstrong, C. Poblenz, D. S. Green, U. K. Mishra, J. S. Speck, and S. A. Ringel, “Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 88, no. 8, pp. 082114-1–082114-3, 2006.
[ ] E. Arslan, S. Bütün, and E. Ozbay, “Leakage current by Frenkel–Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures”, Appl. Phys. Lett., vol. 94, pp. 142106, 2009.
[ ] D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, and Y. Zheng, “On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., vol. 97, pp. 153503, 2010.
[ ] K. K. Ng, Complete Guide To Semiconductor Devices, 2nd Edition, John Wiley & Sons, New York, 2002.
[ ] H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors”, J. Vac. Sci. Technol. B, vol. 21, pp. 1844 (2003).
[ ] W. Huang, T. Khan, and T. P. Chow, “Comparison of MOS capacitors on n-and p-type GaN”, J. Electron. Mater., vol. 35, pp. 726 (2006).
[ ] D. Mistele, T. Rotter, K. S. Röver, S. Paprotta, M. Seyboth, V. Schwegler, F. Fedler, H. Klausing, O. K. Semchinova, J. Stemmer, J. Aderhold, and J. Graul, “First AlGaN/GaN MOSFET with photoanodic gate dielectric”, Mater. Sci. Eng. B, vol. 93, pp. 107 (2002).
[ ] M. Higashiwaki, Z. Chen, R. Chu, Y. Pei, S. Keller, U. K. Mishra, N. Hirose, T. Matsui, and T. Mimura, “A comparative study of effects of SiNx deposition method on AlGaN/GaN heterostructure field-effect transistors”, Appl. Phys. Lett., vol. 94, pp. 053513 (2009).
[ ]M. Fagerlind, F. Allerstam, E. Ö. Sveinbjörnsson, N. Rorsman, A. Kakanakova-Georgieva, A. Lundskog, U. Forsberg and E. Janzén, “Investigation of the interface between silicon nitride passivations and AlGaN/AlN/GaN heterostructures by C(V) characterization of metal-insulator-semiconductor-heterostructure capacitors”, J. Appl. Phys., vol. 108, pp. 014508 (2010).
[ ] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-Gate Dielectrics”, IEEE Electron Device Lett.,vol. 31, pp. 189 (2010).
[ ] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors”, J. Appl. Phys., vol. 114, pp. 244503 (2013).
[ ] F. Tian and E. F. Chor, “Improved Electrical Performance and Thermal Stability of HfO2/Al2O3 Bilayer over HfO2 Gate Dielectric AlGaN/GaN MIS–HFETs”, J. Electrochem. Soc., vol. 157 pp. h557 (2010).
[ ] M. J. Uren , J. Moreke, and M. Kuball, “Buffer design to minimize current collapse in GaN/AlGaN HFETs”, IEEE Trans. Electron Devices, vol. 59, pp.3327, 2012
[ ] S. Huang, S. Yang, J. Roberts, and K. J. Chen, ” Characterization of Vth‐instability in Al2O3/GaN/AlGaN/GaN MIS‐HEMTs by quasi‐static C‐V measurement”, Phys. Status Solidi C, vol. 9, no. 3-4, pp. 923 (2012).
[ ] S. Yang, Z. Tang, K. Y. Wong, Y. S. Lin, Y. Lu, S. Huang, and K. J. Chen, “Mapping of interface traps in high-performance Al2O3/AlGaN/GaN MIS-heterostructures using frequency-and temperature-dependent CV techniques”, 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 9–11 Dec. 2013 ( IEEE, 2013)
[ ] K. J. Chen, S. Yang, Z. Tang, S. Huang, Y. Lu, Q. Jiang, S. Liu, C. Liu, and B. Li, “600-V Normally Off/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse”, Phys. Status Solidi A, vol. 1, pp. 7 (2014).
[ ] M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, “Structural properties of AlN films deposited by plasma‐enhanced atomic layer deposition at different growth temperatures”, Phys. Status Solidi, vol. 209, pp. 266 (2012).
[ ] R.A. Youngman, J.H. Harris, “Luminescence studies of oxygen-related defects in aluminum nitride”, J. Am. Ceram. Soc., vol. 46, pp. 3238, (1990).
[ ] Y. C. Lee, T. T. Kao, J. J. Merola, S. C. Shen, “A Remote-Oxygen-Plasma Surface Treatment Technique for III-Nitride Heterojunction Field-Effect Transistors”, IEEE Trans. Electron Devices, vol. 61, pp. 493 (2014).
[ ] J.H. Harris, R.A. Youngman, R.G. Teller, “On the nature of the oxygen-related defect in aluminum nitride”, J. Mater. Res., vol. 44128, pp. 1763 (1990).
[ ] Y. H. Zhang, “Characterization of as-received hydrophobic treated AlN powder using XPS”, J. Mater. Sci. Lett., vol. 21, pp. 1603 (2002).
[ ] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Analysis of interface electronic structure in InxGa1-xN/GaN heterostructures”, J. Vac. Sci. Technol. B, vol. 22, pp. 2169 (2004).
[ ] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan, “Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator”, Appl. Phys. Lett., vol. 95, pp. 223501 (2009).
[ ] S. Wong, J. Verma, G. Li, T. Zimmermann, H. Xing, and D. Jenaa, “Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterojunctions”, Appl. Phys. Lett., vol. 99, pp. 193504 (2011)
[ ] M. H. Wong, F. Wu, J. S. Speck, and U. K. Mishra, “Polarity inversion of N-face GaN using an aluminum oxide interlayer”, J. Appl. Phys., vol. 108, pp. 123710 (2010).
[ ] M. Esposto, S. Krishnamoorthy, D. N. Nath, Sanyam, T.-H. Hung, and S. Rajan, “Electrical properties of atomic layer deposited aluminum oxide on gallium nitride”, Appl. Phys. Lett., vol. 99, pp. 133504 (2011)
[ ]W. Saito , T. Nitta , Y. Kakiuchi , Y. Saito , K. Tsuda , I. Omura and M. Yamaguchi, “Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure”, IEEE Trans. Electron Devices, vol. 54, pp.1825 (2007)
[ ]M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, “Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs”, IEEE Electron Device Lett., vol. 34, pp.1379 (2013)
[ ] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and H. Ohashi, “High breakdown voltage AlGaN/GaN power-HEMT design and high current density switching behavior”, IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528 (2003).
[ ]D. Jin, J. Joh, S. Krishnan, N. Tipirneni, S. Pendharkar and J. A. del Alamo, “Total current collapse in High-Voltage GaN MIS-HEMTs induced by Zener trapping”, IEDM Tech. Dig., pp.148 (2013).
指導教授 綦振瀛、辛裕明
(Jen-Inn Chyi、Yue-Ming Hsin)
審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明