博碩士論文 100581012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:35.171.45.182
姓名 邱智賢(Jyh-Shyan Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用折射率檢測法在水耕植物之水質檢測研究
(Study on water quality detection of hydroponic plants using the method of measuring refractive index)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ DSP主控之模型車自動導控系統
★ 旋轉式倒單擺動作控制之再設計★ 高速公路上下匝道燈號之模糊控制決策
★ 模糊集合之模糊度探討★ 雙質量彈簧連結系統運動控制性能之再改良
★ 桌上曲棍球之影像視覺系統★ 桌上曲棍球之機器人攻防控制
★ 模型直昇機姿態控制★ 模糊控制系統的穩定性分析及設計
★ 門禁監控即時辨識系統★ 桌上曲棍球:人與機械手對打
★ 麻將牌辨識系統★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 三節式機器人之站立控制★ 三節式機器人之爬行控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 世界上有很多植物研究,在涉及相當大的研究經費開發相關技術的國家中,主要因素是自動化管理為主軸,然而,本論文提出了“利用折射率檢測法在水耕植物之水質檢測研究”,不需要添加化學物質作為催化劑,或使用光譜儀器測量,即時測量和便宜的測量等優點。
在LED植物工廠進行的研究大多採用水耕方法進行營養管理和病蟲害預防。特別是,在營養管理中,可以測量液體電解質以確定含水營養物濃度和吸收率以及電導度(EC)和氫離子指數(pH)變化。精確控制含水量對於大規模健康植物生產至關重要。然而,在大多數當前的電導度測量中,電極適用於確定營養添加劑濃度。這種方法在某些情況下可能是有問題的,例如電極靈敏度低,導致營養過量,特別是在非導電添加劑中,並阻礙植物生長。因此,本論文提出了一種測量水中電導度的光學方法。在這種方法中,共光程外差干涉(HI)測量的高靈敏度被納入水分測量中,以防止干擾電極上的雜質而導致的誤差,並提高測量和分析精度。用於EC測量的傳感器的靈敏度可以達到2300°/ mS·cm-1。該方法具有簡單的光學設置,高穩定性等優點,測量精度高,解析度高,測量快速,操作簡單。另外,它的可行性也被證明了。
然而進階研究量測時,曾經設想將長條稜鏡雙邊鍍膜,發現若採取雙邊鍍膜量測情況下面臨許多問題,首先反射次數過多會造成衰減過大,使量測結果不明顯,或是相位差反應超過360度,造成量測誤判。
因此,如何開發高靈敏度,高解析度的光電生化傳感器已成為一個非常重要的發展目標。這提出了一種表現出即時和簡單測量性能的光電生物傳感器。基於表面電漿共振原理,所提出的生物傳感器利用測試流體和金屬膜之間的粘附活性。當光透過金屬膜時發生金屬衰減全反射(ATR),導致光強度的波動。因此,流體性質可以通過測量離開流體的光的強度來確定。因為向所提議的生物傳感器添加化學物質或試劑是不必要的,所以在測量過程中測量樣品的性質不受影響。其強度的靈敏度達到6.1202(mw /折射率)。
摘要(英) There are many plant studies in the world. In the countries of using considerable research funds to develop related technology, the main factor is focused on automated management. But this paper proposed "Study on water quality detection of hydroponic plants using the method of measuring refractive index ", don’t need to add chemicals as a catalyst or use spectrum instrument to measure, have advantages of immediate and inexpensive measurement.
The study conducted on light emitting diode plant factories have mostly adopted hydroponics for convenient nutrient management and pest and disease prevention. In particular, in nutrient management, liquid electrolytes can be measured to determine the aqueous nutrient concentrations and absorption rates as well as electrical conductivity (EC) and pH variations. Precisely controlling the aqueous nutrient contents is crucial to large-scale healthy plant production. However, in most of the current conductivity measurements, electrodes are adapted for determining the nutrient additive concentrations. This approach can be problematic in some cases, such as low electrode sensitivity, which results in nutrient overdose, specifically in nonconductive additives, and hinders plant growth. Therefore, this paper proposes an optical method for measuring the aqueous nutrient contents. In this method, the high sensitivity of common-path heterodyne interferometry is incorporated into aqueous measurements to prevent errors caused by interfering impurities on the electrodes and improve measurement and analytical accuracy. The sensitivity of the sensor used in EC measurements can reach 2300°/mS·cm-1. The method has some merits, e.g., a simple optical setup, high stability etc., high measurement accuracy, high resolution, rapid measurement, and easy operation. In addition, its feasibility is demonstrated.
Undergoing the advanced study, it would be found that there were many questions if the two long sides were coated thin-film metals. One was that the measured signal was very weak because of much attenuation. Besides, the measured phase difference could be more than 360 degrees. It would result in the measurement misjudgment.
Therefore, how to develop a high sensitivity and high resolution photoelectric biochemical sensor becomes a very important development goal. This proposes a photoelectric biosensor exhibiting instantaneous and simple measurement properties. On the basis of surface plasmon resonance principles, the proposed biosensor capitalizes on the adhesion activity between test fluids and metal films. Attenuated total reflection (ATR) occurs when light permeates metal films, resulting in a fluctuation in light intensity. Thus, the fluid properties can be determined by measuring the intensity of the light that exits the fluid. Because adding chemicals or agents to the proposed biosensor is unnecessary, the properties of the measured sample are unaffected during measurements. The sensitivity of its strength reached 6.1202 (mw/refractive index).
關鍵字(中) ★ 植物工廠
★ 金屬衰減全反射
★ 表面電漿共振
★ 電導度值
★ 氫離子指數(酸鹼度pH)
★ 內部全反射
★ 共光程外差干涉
關鍵字(英) ★ Plant factory
★ Attenuated total reflection
★ surface plasmon resonance
★ conductivity value
★ hydrogen ion index(pH)
★ total internal reflection
★ heterodyne interference
論文目次 目錄

摘要 V
Abstract VII
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XV
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 章節說明 4
第二章 內部全反射原理與外差干涉術 7
2.1 前言 7
2.2 Fresnel’s Equations 7
2.3 單色平面波的偏振 13
2.3.1線性偏振光(Linear Polarization Light) 14
2.3.2圓偏振光(Circular Polarization Light) 15
2.3.3橢圓偏振光(Elliptical Polarization Light) 17
2.4 內部全反射之原理 18
2.5 外差干涉術 22
2.5.1外差干涉的原理 24
2.5.2電光調變器 24
2.5.3使用電光調變器EOM (Electro-Optic Modulator)產生外差光源 27
2.5.4電光調變器軸向定位 29
第三章 表面電漿共振原理 34
3.1 前言 34
3.2 表面電漿共振之耦合組態 35
3.2.1 Otto組態之結構 36
3.2.2 Kretschmann組態之結構 37
3.3 表面電漿共振激發原理 38
第4章 電導度質的量測 40
4.1 前言 40
4.2 長條稜鏡內部全反射次數 40
4.3 實驗液體調配 42
4.4 共光程外差光源架構 46
4.5 獅馬葉綠精量測與模擬分析 49
4.6 花寶2號量測與模擬分析 49
4.7 結果與討論 52
第五章 六角型生化感測器之研究 53
5.1 前言 53
5.2 SPR 54
5.3 ATR金膜與鈦膜厚度對強度之影響 54
5.4 實驗架構 56
5.5 實驗架構與討論 61
5.6 結論 64
第六章 結論 65
6.1 結果討論 65
6.2 未來展望 66
參考資料 67
附錄 A在自由空間中 、 、 80
附錄 B TIR推導 84
附錄 C Kretschmann’s 結構ATR的共振角 88
附錄 D穿透均勻金屬薄膜的電磁波 97
附錄 E實驗誤差分析 104
中英對照表 112
簡歷 116
參考文獻 References
[1] K. Ata , M. Urano , A. Takahashi, “ Thermal Analysis of Pulsed LED Lighting in Plant Factory,” 2017 IEEE IMFDEK, pp 56–57, Japan , 2017.
[2] C. Yan, H. Zhou, J. Li, “ Safety Production Based LED Light System Design for Plant Factories,” 2016 13th CIFSSL, pp 97–100, China , 2016.
[3] C. Karasz, J. Kopjak, “ Comparative study about LED driving methods and feedback system for indoor plant cultivation,” 2016 IEEE 17th CINTI, pp 000219–000224, Hungary, 2016.
[4] N. Q. Thinh, K. Iwamura, R. S. estha, S. Fukumoto, R. Takematsu, J. i. Yamaguchi, K. Kimura, Y. Tanimizu, N. Sugimura, “ A study on supercooling processes of leaf lettuces produced in plant factory,” 2016 ISFA, pp 77–80, USA, 2016.
[5] A. Miyagi, H. Uchimiya, M. K. Yamada, “Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory,” Food Chemistry, Vol. 218, pp 561–568, 2017.
[6] L. Graamans, E. Baeza, Andy van den Dobbelsteen, Ilias Tsafaras, Cecilia Stanghellini, “ Plant factories versus greenhouses: Comparison of resource use efficiency,” Agricultural Systems, vol.160, pp 31–43, 2017.
[7] L. Graamans, A. v. d. Dobbelsteen, E. Meinen, C. Stanghellini, “ Plant factories; crop transpiration and energy balance,” Agricultural Systems Vol. 153, pp 138–147,2017.
[8] B. Siregar, S. Efendi, H. Pranoto, R. Ginting, U. Andayani, F. Fahmi, “Remote monitoring system for hydroponic planting media,” 2017 ICISS, pp 1–6, Indonesia, 2017.
[9] M. Sekimoto, K. Ikeshiro, H.o. Imamura, “ Development of interface using marker less AR for hydroponic culture managing systems in the distant place,” 2017 IEEE 12th PEDS, pp 843–847, USA, 2017.
[10] R. E. Saputra, B. Irawan, Y. E. Nugraha, “ System design and implementation automation system of expert system on hydroponics nutrients control using forward chaining method,” 2017 IEEE APWIMOB, pp 41–46, Indonesia, 2017.
[11] Helmy, M. G. Mahaidayu, A. Nursyahid, T. A. Setyawan, A. Hasan, “ Nutrient Film Technique (NFT) hydroponic monitoring system based on wireless sensor network,” 2017 IEEE COMNETSAT, pp 81–84, Indonesia, 2017.
[12] S. Ruengittinun, S. Phongsamsuan, P. Sureeratanakorn, “ Applied internet of thing for smart hydroponic farming ecosystem (Hfe) ,” 2017 10th UBI-MEDIA, pp 1–4, Thailand, 2017.
[13] T. Chen, M. C. Chiu, “ Development of a cloud-based factory simulation system for enabling ubiquitous factory simulation,” Robotics and Computer-Integrated Manufacturing vol.45, pp 133–143, 2017.
[14] J. Pitakphongmetha, N. Boonnam, S. Wongkoon, T. Horanont, D. Somkiadcharoen, J. Prapakornpilai, “Internet of things for planting in smart farm hydroponics style ,” 2016 ICSEC, pp 1–5, Thailand, 2016.
[15] T. Nishimura, Y. Okuyama, A. Matsushita, H. Ikeda, A. Satoh, “A compact hardware design of a sensor module for hydroponics ,” 2017 IEEE 6th GCCE, pp 1–4, Japan, 2017.
[16] T. Nishimura, Y. Okuyama, A. Satoh, “High-accuracy and low-cost sensor module for hydroponic culture system,” 2016 IEEE 5th GCCE, pp 1–4, Japan, 2016.
[17] V. H. Andaluz, A. Y. Tovar, K. D. Bedon, J. S. Ortiz, E. Pruna, “Automatic control of drip irrigation on hydroponic agriculture: Daniela tomato production,” 2016 IEEE ICA-ACCA, pp 1–6, Chile, 2016.
[18] M. A. Khan, S. J. Butt, K. A. khan, F. Nadeem, B. Yousaf, H. U. Javed, “Morphological and physico-biochemical characterization of various tomato cultivars in a simplified soilless media,” Annals of Agricultural Sciences vol.62, pp 139–143, 2017.
[19] J. Y. Cai, C. Y. Tseng, T. S. Huanga, “ Work Study and Simulation Optimization of Supply-demand Balancing in the Moth Orchid Plant Factory,” Procedia Manufacturing vol.11, pp 1966–1975, 2017.
[20] W. J. Cho, H. J. Kim, D. H. Jung, D. W. Kim, T. I. Ahn, J. E. Son, “On-site ion monitoring system for precision hydroponic nutrient management,” Computers and Electronics in Agriculture vol.146, pp 51–58, 2018.
[21] S. Hosseinzadeh, G. Bonarrigo, Y. Verheust, P. Roccaro, S. V. Hulle, “Water reuse in closed hydroponic systems: Comparison of GAC adsorption, ion exchange and ozonation processes to treat recycled nutrient solution,” Aquacultural Engineering vol.78, pp 190–195, 2017.
[22] D. S. Delmas, P. L. Massana, A. Nadal, M. E. Montserrat, P. Munoz, J. I. Montero, A. Josa, X. Gabarrell, J. Rieradevall, “ Environmental assessment of an integrated rooftop greenhouse for food production in cities,” Journal of Cleaner Production vol.177, pp 326–337, 2018.
[23] S. Saha, A. Monroe, M. R. Day, “Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems,” Annals of Agricultural Science vol.61, pp 181–186, 2016.
[24] B. Konig, J. Janker, T. Reinhardt, Morris Villarroe, Ranka Junge, “Analysis of aquaponics as an emerging technological innovation system,” Journal of Cleaner Production vol.180, pp 232–243, 2018.
[25] L. Xu, S. Zhang, Y. Tan, S. Zhang, L. Sun, “Refractive Index Measurement of Liquids by Double-Beam Laser Frequency-Shift Feedback,” IEEE Photonics Technology Letters, vol.28, pp 1049-1052, 2016.
[26] C. ?de, K. Yuksel, “A comparative study of optical fiber sensors for refractive index measurement,” 2016 ELECO, pp 725–730, Turkey, 2016.
[27] D. Chetia, T. Basumatary, H. K. Singh, T. Bezboruah, “Low-Cost Refractometer With Longitudinally Displaced Optical Fibers,” IEEE Sensors Journal, vol.16, 2016.
[28] H. Wei, S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technology Letters, vol.28, 2016.
[29] C. Guo, P. Niu, J. Wanga, J. Zhao, C. Zhang, “Dual-point reflective refractometer based on parallel no-core fiber/FBG structure,” Optical Fiber Technology vol.40, pp 46–51, 2018.
[30] F. Liu, X. Guo, Q. Zhang, X. Fu, “Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer,” Optics Communications vol.405, pp 147–151,2017.
[31] R. Zawisza, T. Eftimov, P. Mikulic, Y. Chinifooroshan, A. Celebanska, , W.J. Bock, L.R. Jaroszewicz, “Dual-resonance long-period grating in fiber loop mirror structure for liquid refractive index measurement,” Opto-Electronics Review vol.26, pp 24–28, 2018.
[32] A. R. Rodriguez, R. Cruz, D. M. Arrioja, I. M. Maestro, C. R. Zamarreno, F. Arregui, “ MMI fiber optic refractometer with universal pH indicator coating,” 2016 4th PHOTOPTICS, pp 1–4, Italy, 2016.
[33] J. Y. Lin, J. H. Jhuang, M. C. Hsieh, C. O. Chang, “Measurement of small wavelength shift using diffraction grating and high-angular-sensitivity total-internal-reflection heterodyne interferometer,” Optics and Lasers in Engineering vol ol.100, pp 155–160, 2018.
[34] C. Liu, H. Cai, J. Jia, T. Cao, Y. Li, J. Sun, C. Xu, C. Liu, “A microfluidic three dimensional immunoassay biosensor for rapid detection of C-reaction protein,” 2017 IEEE 12th NEMS, pp 784–787, USA, 2017.
[35] P. Lin, Y. Li, T. Cheng, T. Suzuki, Y. Ohishi, “Coexistence of Photonic Bandgap Guidance and Total Internal Reflection in Photonic Crystal Fiber Based on a High-Index Array With Internal Air Holes,” IEEE JSTQE, vol.22, 2016.
[36] H. P. Adl, F. Bayat, N. Ghorani, S. A. Kandjani, H. Tajalli, “A Defective 1-D Photonic Crystal-Based Chemical Sensor in Total Internal Reflection Geometry,” IEEE Sensors Journal, vol.17, 2017.
[37] V. M.l d. Silva, J. F. M. Filho, J. F. d. Nascimento, “Computational modeling of transducer elements of temperature sensors using surface plasmon resonance in a D-shaped optical fiber,” 2017 SBMO/IEEE MTT-S IMOC, pp 1–5, Brazil, 2017.
[38] Y. Tanaka, N. Suzuki, K. Mora, J. Mizuno, S. Shoji, S. Uemura, “ Widefield real-time single-cell secretion imaging with optical waveguide technique,” 2017 19th TRANSDUCERS, pp 1580–1583, Taiwan, 2017.
[39] J. Mabin, E. Alghamdi, C. Hodges, S. J. Freakley, S. A. Lynch, “Monitoring the photocatalytic oxidation of water-based organic pollutants by FT-IR spectroscopy in real-time,” 2016 41st IRMMW-THz, pp 1–2, Denmark, 2016.
[40] B. Jin, Y. Wang, Y.i Wang, D. Wang, “ Application research of distributed optical fiber sensing technology used in safety monitoring of coalbed methane pipelines,” 2016 PIERS, pp 4903–4906, 2016.
[41] A. Lin, Y. Zhao, F. Wu, “Application of spatial heterodyne spectroscopy interferometer in velocity measurement and error analysis,” 2017 IEEE IST, pp 1–6, China, 2017.
[42] C. Lu, E. D. B. Fay, J. D. Ellis, T. L. Schmitz, J. A. Tarbutton, “ Periodic Error Compensation in Fiber-coupled Heterodyne Interferometry,” Procedia Manufacturing vol.10, pp 674–682, 2017.
[43] S. H. Aref, “Physical measurement with in-line fiber Mach-Zehnder interferometer using differential phase white light interferometry,” Optical Fiber Technology vol.38, pp 98–103, 2017.
[44] C. Lin, S. Yan, F. You, “Fabrication and characterization of short-period double-layer cross-grating with holographic lithography,” Optics Communications vol.383, pp 17–25, 2017.
[45] Y. Wang, F. Xie, S. M., L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Optics and Lasers in Engineering vol.93, pp 164–170, 2017.
[46] B. A. Prabowo, K. C. Liu, “Multi-metallic sensing layers for surface plasmon resonance sensor,” 2017 IEEE 15th SCORED, pp 238–242, Malaysia, 2017.
[47] Y. Iwasaki, M. Seyama, S. Inoue, K. Hayashi, “Time-space resolved surface plasmon resonance microscope system for biomolecular reaction analysis,” 2017 MHS, pp 1–5, Japan, 2017.
[48] C. Pothipor, C. Lertvachirapaiboon, K. Shinbo, K. Kato, F. Kaneko, K. Ounnunkad, A. Baba, “Transmission surface plasmon resonance imaging based on gold grating/silver nanoparticles for detection of creatinine,” 2017 ISEIM, pp 461–463, Japan, 2017.
[49] X. Yan, H. Wang, D.Yang, “Polarization filter characteristics of photonic crystal fiber based on surface plasmon resonance,” 2017 CLEO-PR, pp 1–3, 2017.
[50] B. Hong, F. Vallini, C. Y. Fang, A. Alassad, Y. Fainman, “Low-cost thermal infrared detector based on surface plasmon resonance imaging,” 2017 CLEO, USA, 2017.
[51] L. Shang, C. Liu, K. Hayashi, “Localized Surface Plasmon Resonance Modified with Molecularly Imprinted Sol-gel Sensor for cis-Jasmone Vapor Detection,” IEEE sensors, UK, 2017.
[52] I. Yaremchuka, H. Petrovskaa, V. Fitio , Y. Bobitski, “Optimization and fabrication of the gold-coated GaAs diffraction gratings for surface plasmon resonance sensors.”Optik vol. 158, pp. 535–540, 2018.
[53] N. Alim, M. N. Uddin, “Surface plasmon resonance biosensor in healthcare application,” IEEE Region 10 Symposium TENSYMP, India, 2017.
[54] X. C. Yang, Y. Lu, B. L. Liu, J. Q. Yao, “High Sensitivity Hollow Fiber Temperature Sensor Based on Surface Plasmon Resonance and Liquid Filling .”IEEE Photonics Society, pp. 1-1, 2017.
[55] Z. W. Ding, T. T. Lang, Y. Wang, and C. L. Zhao, “Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure.” IEEE, pp. 4734-4739, 2017.
[56] F. Wang, Y. Zhang, Z. Liu, S. Qian, Y. Gu, Z. Jing, C. Sun, Wei Peng, “Detection of Glycoprotein using fiber optic surface plasmon resonance sensors with Boronic acid.” OFS 25th, 2017.
[57] S. M. A. Uddin, S. S. Chowdhury, and E. Kabir, “A Theoretical Model for Determination of Optimum Metal Thickness in Kretschmann Configuration Based Surface Plasmon Resonance Biosensors.” Cox′s Bazar, Bangladesh, Bangladesh, 2017.
[58] Z. Ding, C. Zhao, “Fiber Refractive Index Sensor Based on Surface Plasmon Resonance in Triangular Pyramid Structure.” ICOCN, China, 2017.
[59] A. Hosoki1, M. Nishiyama, H. Igawa, K. Watanabe, “Hetero-core Fiber Optic Surface Plasmon Resonance Sensor Based on Au/Ta2O5/Pd Multi-layer Films for Hydrogen Sensin.” PIERS, China, 2016.
[60] J. O. Maciel Neto, Gustavo Oliveira Cavalcanti, Ignacio Llamas-Garro, Jung-Mu Kim, Eduardo Fontana, “Pressure Sensing by Surface Plasmon Resonance in the Otto Configuration.” IEEE Sensors, USA, 2016.
[61] M. H. Chiu, S. F. Wang, and R. S. Chang “Instrument for measuring small angles by use of multiple total internal reflections in heterodyne interferometry.” ,APPLIED OPTICS ,vol. 43, No. 29, 2004.
[62] S. F. Wang, M. H. Chiu, W. W. Chen, F. H. Kao,and R. S. Chang,“Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry” ,appled optics ,vol. 48, No. 13 2009.
[63] Shinan Qian Peter Takacs,“Design of multiple-function long trace profiler” ,SPIE optical Engineering 2007.
[64] Eugene Hecht, OPTICS. Fourth Edition, Chap4, Addison Wesley (2002).
[65] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9.
[66] R.C.Jones, “New calculus for the treatment of optical system”,J.Opt.Spc.Am.31,488,1941.
[67] Wolf, K. B. Geometry and dynamics in refracting systems. European Journal of Physics. 1995, 16: 14–20
[68] A. Yariv, P. Yeh, Optical waves in crystal, John Wiley Sons,Inc, 1983.
[69] Yariv , “Optical Waves in Crystals” , John Wiley , Chapter 7 ~ Chapter 8 , 2003.
[70] 王信福, 「 D型光纖生化感測器」, 國立中央大學光電科學研究所,博士論文,民國九十四年.
[71] 楊鴻仁, 「新型生化感測器之分析與研究」,國立中央大學光電科學研究所,碩士論文,民國一百零三年.
[72] Andreas Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection”, Z.Phys., 1968.
[73] Kretschmann, E.,“Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phy., Vol. 241, pp. 313-324, (1971).
[74] 李學瑩, 「結合共光程外差干涉術與表面電漿共振原理的穿透式生化感測器之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[75] 呂正平, 「遠端檢測植物工廠的酸鹼度之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[76] 賴柏睿, 「結合Arduino及App程式於遠端控制LED植物成長燈之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[77] 陳威宇, 「以共光程外差干涉儀作微小位移量測」, 國立中央大學光電科學研究所,碩士論文,民國九十四年六月.
[78] H.J. Kim, W.-K. Kim, M.-Y. Roh, C.-I. Kang, J.-M. Park, and K. A. Sudduth, “Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes,” Comput. Electron. Agricult., vol. 93, pp. 46–54, Apr. 2013.
[79] D. S. Domingues, H. W. Takahashi, C. A. P. Camara, and S. L. Nixdorf, “Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production,” Comput. Electron. Agricult., vol. 84, pp. 53–61, Jun. 2012.
[80] F. X. Rius-Ruiz, F. J. Andrade, J. Riu, and F. X. Rius, “Computeroperated analytical platform for the determination of nutrients in hydroponic systems,” Food Chem., vol. 147, pp. 92–97, Mar. 2014.
[81] R. Fan, X. Yang, H. Xie, and M.-A. Reeb, “Determination of nutrients in hydroponic solutions using mid-infrared Spectroscopy,” Sci. Horticulturae, vol. 144, pp. 48–54, Sep. 2012.
[82] A. J. S. Neto, S. Zolnier, and D. C. de Lopes, “Development and evaluation of an automated system for fertigation control in soilless tomato production,” Comput. Electron. Agricult., vol. 103, pp. 17–25, Apr. 2014.
[83] C. Dong, D. Hu, Y. Fu, M.Wang, and H. Liu, “Analysis and optimization of the effect of light and nutrient solution on wheat growth and development using an inverse system model strategy,” Comput. Electron. Agricult., vol. 109, pp. 221–231, Nov. 2014.
[84] M. Futagawa, Y. Ban, K. Kawashima, and K. Sawada, “On-site monitoring of soil condition for precision agriculture by using multimodal microchip integrated with EC and temperature sensors,” in Proc. IEEE TRANSDUCERS, Barcelona, pp. 112–115, Spain, Jun. 2013,
[85] M. J. S. M. Lenord and C. Sridevi, “Design of efficient hydroponic nutrient solution control system using soft computing based solution grading,” ICCPEIC, pp. 148–154, Apr. 2014.
[86] E. Soubies, L. Blanc-Feraud, S. Schaub, and G. Aubert, “A 3D model with shape prior information for biological structures reconstruction using multiple-angle total internal reflection fluorescence microscopy,” in Proc. IEEE 11th ISBI, pp. 608–611, China, 2014.
[87] Y. Liao, E. Austin, P. J. Nash, S. A. Kingsley, and D. J. Richardson, “Phase sensitivity characterization in fiber-optic sensor systems using amplifiers and TDM,” J. Light. Technol., vol. 31, no. 10, pp. 1645–1653, May 15, 2013.
[88] Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Magm. vol. 4, pp. 396-402, 1902.
[89] M. H. Chiu, C. H. Shih, M. H. Chi, “Optimum sensitivity fsingle-mode D-type optical fiber sensor in the intensity easurement,” Sens. Actuators.B, vol. 123, pp. 1120-1124, 2007.
[90] M. H. Chiu, S. F. Wang, R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Optics Letters, vol. 30, No. 3 pp. 233-235, 2005.
[91] S. F. Wang, M. H. Chiu, R. . Chang, “New idea for a D-type optical fiber sensor based on Kretschmann’s configuration,” Opt. Eng., vol. 44, pp. 4936-4938, 2005.
[92] L. Tong, Y. Shen, L. Ye, L. Chen, “Performance improvement of sapphire fiber optic sensor using a u-shaped reference fiber,” Proc. SPIE, Vol. 3555, Optical and Fiber Optic Sensor Systems, PP. 236, 1998.
[93] V.V.R. Saia, T. Kundub, S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosensors and Bioelectronics, vol. 24, pp. 2804-2809, 2009.
[94] T. J. Lin, M. F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, vol. 24, pp. 1213-1218, 2009.
[95] T. J. Lin, K. T. Huang, C. Y. Liu, “Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, vol. 22, Issue 4, pp. 513-518, 2006.
[96] T. J. Lin, C. T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” The Journal of Supercritical Fluids, vol. 41, pp. 317-325, 2007.
[97] L. K. Chau, Y. F. Lin, S. F. Cheng, Tsao-Jen Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 113, pp. 100-105, 2006.
[98] J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating” Sensors and Actuators B: Chemical, vol. 119, pp. 105-109, 2006.
[99] B.D. Gupta, A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study” Sensors and Actuators B: Chemical, vol. 107, pp. 40-46, 2005.
[100] A. K. Sharma, B.D. Gupta, “Fiber optic sensor based on surface plasmon resonance with nanoparticle films,” PNFA, vol. 3, pp. 30-37, 2005.
[101] S. F. Wang, C. W. Huang, C. Y. Liu, W. Lai, M. F. Hsieh, H. C. Chung, J. S. Chiu, Y. H. Liao, R. H. Yeh, “Reflective Type Liquid Refractometer Based on Multiple Total Internal Reflections and Attenuated Total Reflections in Heterodyne Interferometry,” IEEE, pp. 287-290, 2010.
[102] M. H. Chiu, J. Y. Lee, D. C. Su, K. H. Lee, “Vacuum measurement using total-internal-reflection heterodyne interferometry,” Precision Engineering, vol. 23, pp. 260-263, 1999.
[103] M. H. Chiu, J.Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt., Vol. 38, No. 19, pp. 4047-4052, 1999.
[104] P. K. Maharana, R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sensors and Actuators B: Chemical, vol. 169, pp. 161-166, 2012.
[105] R. Jha, A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sensors and Actuators A: Physical, vol. 165, pp. 271-275, 2011.
[106] I. A. Pronin, D. T. Dimitrov, L. K. Krasteva, K. I. Papazova, I. A. Averin, A. S. Chanachev, A. S. Bojinova, A. T. Georgieva, N. D. Yakushova, V. A. Moshnikov, “Theoretical and experimental investigations of ethanol vapour sensitive properties of junctions composed from produced by sol–gel technology pure and Fe modi?ed nanostructured ZnO thin ?lms,” Sensors and Actuators A: Physical, vol. 206, pp. 88-96, 2014.
[107] M. S. Islam, A. Z Kouzani, “Variable Incidence Angle Subwavelegth Grating SPR Graphene Biosensor,” IEEE EMBS, pp. 3024-3027, 2013.
[108] B. Chen, C. Liu, M. Ota, and K. Hayashi, “Terpene Detection Based on Localized Surface Plasma Resonance of Thiolate-Modified Au Nanoparticles,” IEEE Sensors Journal, vol. 13, pp. 1307-1314, 2013.
[109] K. P. Huang, C. H. Shen, J. H. Chen, “Common-path Heterodyne Interferometric and Magnetic Sensitivity-enhanced Surface Plasmon Resonance Carbon Monoxide gas sensor” IEEE ICST, pp. 406-410, 2013
[110] P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics TechnologyLetters, vol. 25, pp. 2156-2159, 2013.
[111] A. Armin, M. Soltanolkotabi, P. Feizollah, “On the pH and concentration response of an evanescent ?eld absorption sensor using a coiled-shape plastic optical ?ber,” Sensors and Actuators A: Physical, vol. 165, pp. 181-184, 2011.
[112] H. Chen, X. Wang, “A Novel Detector for Chromatography and Estradiol Immune Sensor Based on Surface Plasma Resonance”, IEEE-BMEI, pp. 1401-1404, China, 2010.
[113] B. R. Lu, L. Zhou, Z. Liu, Y. Wang, Y. Chen, and R. Liu, “Spectral Detection of Regenerated Silk Fibroin on a Two Dimensional Metallic Photonic Crystal Based SPR Biosensor,” IEEE-NANO, pp. 20-23, UK, 2012.
[114] H. F. Hsu, Z. W. Lin, Y. T. Huang, and C. J. Yuan, “Real-Time Detection of Protein Kinase A Activity by A Si-Based ARROW-B SPR Biosensor,” CLEO-PR, Japan, 2013.
[115] B. Liedberg, C. Nylander, I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983.
[116] S. F. Wang, H. Ma, F. H. Kao and A. L. Liu, “Polyhedron Biosensor Based on the Surface Plasmon Resonance technology in Heterodyne Interferometry”, Advanced Materials Research Vol. 716, 510-515 2013.
[117] Shen S, Liu T, Guo J. , “Optical phase-shift detection of surface plasmon resonance ”, Appl Opt, PP. 1747-51, 1998.
指導教授 王文俊(Wen-June Wang) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明