參考文獻 |
References
[1] K. Ata , M. Urano , A. Takahashi, “ Thermal Analysis of Pulsed LED Lighting in Plant Factory,” 2017 IEEE IMFDEK, pp 56–57, Japan , 2017.
[2] C. Yan, H. Zhou, J. Li, “ Safety Production Based LED Light System Design for Plant Factories,” 2016 13th CIFSSL, pp 97–100, China , 2016.
[3] C. Karasz, J. Kopjak, “ Comparative study about LED driving methods and feedback system for indoor plant cultivation,” 2016 IEEE 17th CINTI, pp 000219–000224, Hungary, 2016.
[4] N. Q. Thinh, K. Iwamura, R. S. estha, S. Fukumoto, R. Takematsu, J. i. Yamaguchi, K. Kimura, Y. Tanimizu, N. Sugimura, “ A study on supercooling processes of leaf lettuces produced in plant factory,” 2016 ISFA, pp 77–80, USA, 2016.
[5] A. Miyagi, H. Uchimiya, M. K. Yamada, “Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory,” Food Chemistry, Vol. 218, pp 561–568, 2017.
[6] L. Graamans, E. Baeza, Andy van den Dobbelsteen, Ilias Tsafaras, Cecilia Stanghellini, “ Plant factories versus greenhouses: Comparison of resource use efficiency,” Agricultural Systems, vol.160, pp 31–43, 2017.
[7] L. Graamans, A. v. d. Dobbelsteen, E. Meinen, C. Stanghellini, “ Plant factories; crop transpiration and energy balance,” Agricultural Systems Vol. 153, pp 138–147,2017.
[8] B. Siregar, S. Efendi, H. Pranoto, R. Ginting, U. Andayani, F. Fahmi, “Remote monitoring system for hydroponic planting media,” 2017 ICISS, pp 1–6, Indonesia, 2017.
[9] M. Sekimoto, K. Ikeshiro, H.o. Imamura, “ Development of interface using marker less AR for hydroponic culture managing systems in the distant place,” 2017 IEEE 12th PEDS, pp 843–847, USA, 2017.
[10] R. E. Saputra, B. Irawan, Y. E. Nugraha, “ System design and implementation automation system of expert system on hydroponics nutrients control using forward chaining method,” 2017 IEEE APWIMOB, pp 41–46, Indonesia, 2017.
[11] Helmy, M. G. Mahaidayu, A. Nursyahid, T. A. Setyawan, A. Hasan, “ Nutrient Film Technique (NFT) hydroponic monitoring system based on wireless sensor network,” 2017 IEEE COMNETSAT, pp 81–84, Indonesia, 2017.
[12] S. Ruengittinun, S. Phongsamsuan, P. Sureeratanakorn, “ Applied internet of thing for smart hydroponic farming ecosystem (Hfe) ,” 2017 10th UBI-MEDIA, pp 1–4, Thailand, 2017.
[13] T. Chen, M. C. Chiu, “ Development of a cloud-based factory simulation system for enabling ubiquitous factory simulation,” Robotics and Computer-Integrated Manufacturing vol.45, pp 133–143, 2017.
[14] J. Pitakphongmetha, N. Boonnam, S. Wongkoon, T. Horanont, D. Somkiadcharoen, J. Prapakornpilai, “Internet of things for planting in smart farm hydroponics style ,” 2016 ICSEC, pp 1–5, Thailand, 2016.
[15] T. Nishimura, Y. Okuyama, A. Matsushita, H. Ikeda, A. Satoh, “A compact hardware design of a sensor module for hydroponics ,” 2017 IEEE 6th GCCE, pp 1–4, Japan, 2017.
[16] T. Nishimura, Y. Okuyama, A. Satoh, “High-accuracy and low-cost sensor module for hydroponic culture system,” 2016 IEEE 5th GCCE, pp 1–4, Japan, 2016.
[17] V. H. Andaluz, A. Y. Tovar, K. D. Bedon, J. S. Ortiz, E. Pruna, “Automatic control of drip irrigation on hydroponic agriculture: Daniela tomato production,” 2016 IEEE ICA-ACCA, pp 1–6, Chile, 2016.
[18] M. A. Khan, S. J. Butt, K. A. khan, F. Nadeem, B. Yousaf, H. U. Javed, “Morphological and physico-biochemical characterization of various tomato cultivars in a simplified soilless media,” Annals of Agricultural Sciences vol.62, pp 139–143, 2017.
[19] J. Y. Cai, C. Y. Tseng, T. S. Huanga, “ Work Study and Simulation Optimization of Supply-demand Balancing in the Moth Orchid Plant Factory,” Procedia Manufacturing vol.11, pp 1966–1975, 2017.
[20] W. J. Cho, H. J. Kim, D. H. Jung, D. W. Kim, T. I. Ahn, J. E. Son, “On-site ion monitoring system for precision hydroponic nutrient management,” Computers and Electronics in Agriculture vol.146, pp 51–58, 2018.
[21] S. Hosseinzadeh, G. Bonarrigo, Y. Verheust, P. Roccaro, S. V. Hulle, “Water reuse in closed hydroponic systems: Comparison of GAC adsorption, ion exchange and ozonation processes to treat recycled nutrient solution,” Aquacultural Engineering vol.78, pp 190–195, 2017.
[22] D. S. Delmas, P. L. Massana, A. Nadal, M. E. Montserrat, P. Munoz, J. I. Montero, A. Josa, X. Gabarrell, J. Rieradevall, “ Environmental assessment of an integrated rooftop greenhouse for food production in cities,” Journal of Cleaner Production vol.177, pp 326–337, 2018.
[23] S. Saha, A. Monroe, M. R. Day, “Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems,” Annals of Agricultural Science vol.61, pp 181–186, 2016.
[24] B. Konig, J. Janker, T. Reinhardt, Morris Villarroe, Ranka Junge, “Analysis of aquaponics as an emerging technological innovation system,” Journal of Cleaner Production vol.180, pp 232–243, 2018.
[25] L. Xu, S. Zhang, Y. Tan, S. Zhang, L. Sun, “Refractive Index Measurement of Liquids by Double-Beam Laser Frequency-Shift Feedback,” IEEE Photonics Technology Letters, vol.28, pp 1049-1052, 2016.
[26] C. ?de, K. Yuksel, “A comparative study of optical fiber sensors for refractive index measurement,” 2016 ELECO, pp 725–730, Turkey, 2016.
[27] D. Chetia, T. Basumatary, H. K. Singh, T. Bezboruah, “Low-Cost Refractometer With Longitudinally Displaced Optical Fibers,” IEEE Sensors Journal, vol.16, 2016.
[28] H. Wei, S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technology Letters, vol.28, 2016.
[29] C. Guo, P. Niu, J. Wanga, J. Zhao, C. Zhang, “Dual-point reflective refractometer based on parallel no-core fiber/FBG structure,” Optical Fiber Technology vol.40, pp 46–51, 2018.
[30] F. Liu, X. Guo, Q. Zhang, X. Fu, “Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer,” Optics Communications vol.405, pp 147–151,2017.
[31] R. Zawisza, T. Eftimov, P. Mikulic, Y. Chinifooroshan, A. Celebanska, , W.J. Bock, L.R. Jaroszewicz, “Dual-resonance long-period grating in fiber loop mirror structure for liquid refractive index measurement,” Opto-Electronics Review vol.26, pp 24–28, 2018.
[32] A. R. Rodriguez, R. Cruz, D. M. Arrioja, I. M. Maestro, C. R. Zamarreno, F. Arregui, “ MMI fiber optic refractometer with universal pH indicator coating,” 2016 4th PHOTOPTICS, pp 1–4, Italy, 2016.
[33] J. Y. Lin, J. H. Jhuang, M. C. Hsieh, C. O. Chang, “Measurement of small wavelength shift using diffraction grating and high-angular-sensitivity total-internal-reflection heterodyne interferometer,” Optics and Lasers in Engineering vol ol.100, pp 155–160, 2018.
[34] C. Liu, H. Cai, J. Jia, T. Cao, Y. Li, J. Sun, C. Xu, C. Liu, “A microfluidic three dimensional immunoassay biosensor for rapid detection of C-reaction protein,” 2017 IEEE 12th NEMS, pp 784–787, USA, 2017.
[35] P. Lin, Y. Li, T. Cheng, T. Suzuki, Y. Ohishi, “Coexistence of Photonic Bandgap Guidance and Total Internal Reflection in Photonic Crystal Fiber Based on a High-Index Array With Internal Air Holes,” IEEE JSTQE, vol.22, 2016.
[36] H. P. Adl, F. Bayat, N. Ghorani, S. A. Kandjani, H. Tajalli, “A Defective 1-D Photonic Crystal-Based Chemical Sensor in Total Internal Reflection Geometry,” IEEE Sensors Journal, vol.17, 2017.
[37] V. M.l d. Silva, J. F. M. Filho, J. F. d. Nascimento, “Computational modeling of transducer elements of temperature sensors using surface plasmon resonance in a D-shaped optical fiber,” 2017 SBMO/IEEE MTT-S IMOC, pp 1–5, Brazil, 2017.
[38] Y. Tanaka, N. Suzuki, K. Mora, J. Mizuno, S. Shoji, S. Uemura, “ Widefield real-time single-cell secretion imaging with optical waveguide technique,” 2017 19th TRANSDUCERS, pp 1580–1583, Taiwan, 2017.
[39] J. Mabin, E. Alghamdi, C. Hodges, S. J. Freakley, S. A. Lynch, “Monitoring the photocatalytic oxidation of water-based organic pollutants by FT-IR spectroscopy in real-time,” 2016 41st IRMMW-THz, pp 1–2, Denmark, 2016.
[40] B. Jin, Y. Wang, Y.i Wang, D. Wang, “ Application research of distributed optical fiber sensing technology used in safety monitoring of coalbed methane pipelines,” 2016 PIERS, pp 4903–4906, 2016.
[41] A. Lin, Y. Zhao, F. Wu, “Application of spatial heterodyne spectroscopy interferometer in velocity measurement and error analysis,” 2017 IEEE IST, pp 1–6, China, 2017.
[42] C. Lu, E. D. B. Fay, J. D. Ellis, T. L. Schmitz, J. A. Tarbutton, “ Periodic Error Compensation in Fiber-coupled Heterodyne Interferometry,” Procedia Manufacturing vol.10, pp 674–682, 2017.
[43] S. H. Aref, “Physical measurement with in-line fiber Mach-Zehnder interferometer using differential phase white light interferometry,” Optical Fiber Technology vol.38, pp 98–103, 2017.
[44] C. Lin, S. Yan, F. You, “Fabrication and characterization of short-period double-layer cross-grating with holographic lithography,” Optics Communications vol.383, pp 17–25, 2017.
[45] Y. Wang, F. Xie, S. M., L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Optics and Lasers in Engineering vol.93, pp 164–170, 2017.
[46] B. A. Prabowo, K. C. Liu, “Multi-metallic sensing layers for surface plasmon resonance sensor,” 2017 IEEE 15th SCORED, pp 238–242, Malaysia, 2017.
[47] Y. Iwasaki, M. Seyama, S. Inoue, K. Hayashi, “Time-space resolved surface plasmon resonance microscope system for biomolecular reaction analysis,” 2017 MHS, pp 1–5, Japan, 2017.
[48] C. Pothipor, C. Lertvachirapaiboon, K. Shinbo, K. Kato, F. Kaneko, K. Ounnunkad, A. Baba, “Transmission surface plasmon resonance imaging based on gold grating/silver nanoparticles for detection of creatinine,” 2017 ISEIM, pp 461–463, Japan, 2017.
[49] X. Yan, H. Wang, D.Yang, “Polarization filter characteristics of photonic crystal fiber based on surface plasmon resonance,” 2017 CLEO-PR, pp 1–3, 2017.
[50] B. Hong, F. Vallini, C. Y. Fang, A. Alassad, Y. Fainman, “Low-cost thermal infrared detector based on surface plasmon resonance imaging,” 2017 CLEO, USA, 2017.
[51] L. Shang, C. Liu, K. Hayashi, “Localized Surface Plasmon Resonance Modified with Molecularly Imprinted Sol-gel Sensor for cis-Jasmone Vapor Detection,” IEEE sensors, UK, 2017.
[52] I. Yaremchuka, H. Petrovskaa, V. Fitio , Y. Bobitski, “Optimization and fabrication of the gold-coated GaAs diffraction gratings for surface plasmon resonance sensors.”Optik vol. 158, pp. 535–540, 2018.
[53] N. Alim, M. N. Uddin, “Surface plasmon resonance biosensor in healthcare application,” IEEE Region 10 Symposium TENSYMP, India, 2017.
[54] X. C. Yang, Y. Lu, B. L. Liu, J. Q. Yao, “High Sensitivity Hollow Fiber Temperature Sensor Based on Surface Plasmon Resonance and Liquid Filling .”IEEE Photonics Society, pp. 1-1, 2017.
[55] Z. W. Ding, T. T. Lang, Y. Wang, and C. L. Zhao, “Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure.” IEEE, pp. 4734-4739, 2017.
[56] F. Wang, Y. Zhang, Z. Liu, S. Qian, Y. Gu, Z. Jing, C. Sun, Wei Peng, “Detection of Glycoprotein using fiber optic surface plasmon resonance sensors with Boronic acid.” OFS 25th, 2017.
[57] S. M. A. Uddin, S. S. Chowdhury, and E. Kabir, “A Theoretical Model for Determination of Optimum Metal Thickness in Kretschmann Configuration Based Surface Plasmon Resonance Biosensors.” Cox′s Bazar, Bangladesh, Bangladesh, 2017.
[58] Z. Ding, C. Zhao, “Fiber Refractive Index Sensor Based on Surface Plasmon Resonance in Triangular Pyramid Structure.” ICOCN, China, 2017.
[59] A. Hosoki1, M. Nishiyama, H. Igawa, K. Watanabe, “Hetero-core Fiber Optic Surface Plasmon Resonance Sensor Based on Au/Ta2O5/Pd Multi-layer Films for Hydrogen Sensin.” PIERS, China, 2016.
[60] J. O. Maciel Neto, Gustavo Oliveira Cavalcanti, Ignacio Llamas-Garro, Jung-Mu Kim, Eduardo Fontana, “Pressure Sensing by Surface Plasmon Resonance in the Otto Configuration.” IEEE Sensors, USA, 2016.
[61] M. H. Chiu, S. F. Wang, and R. S. Chang “Instrument for measuring small angles by use of multiple total internal reflections in heterodyne interferometry.” ,APPLIED OPTICS ,vol. 43, No. 29, 2004.
[62] S. F. Wang, M. H. Chiu, W. W. Chen, F. H. Kao,and R. S. Chang,“Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry” ,appled optics ,vol. 48, No. 13 2009.
[63] Shinan Qian Peter Takacs,“Design of multiple-function long trace profiler” ,SPIE optical Engineering 2007.
[64] Eugene Hecht, OPTICS. Fourth Edition, Chap4, Addison Wesley (2002).
[65] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9.
[66] R.C.Jones, “New calculus for the treatment of optical system”,J.Opt.Spc.Am.31,488,1941.
[67] Wolf, K. B. Geometry and dynamics in refracting systems. European Journal of Physics. 1995, 16: 14–20
[68] A. Yariv, P. Yeh, Optical waves in crystal, John Wiley Sons,Inc, 1983.
[69] Yariv , “Optical Waves in Crystals” , John Wiley , Chapter 7 ~ Chapter 8 , 2003.
[70] 王信福, 「 D型光纖生化感測器」, 國立中央大學光電科學研究所,博士論文,民國九十四年.
[71] 楊鴻仁, 「新型生化感測器之分析與研究」,國立中央大學光電科學研究所,碩士論文,民國一百零三年.
[72] Andreas Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection”, Z.Phys., 1968.
[73] Kretschmann, E.,“Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen,” Z. Phy., Vol. 241, pp. 313-324, (1971).
[74] 李學瑩, 「結合共光程外差干涉術與表面電漿共振原理的穿透式生化感測器之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[75] 呂正平, 「遠端檢測植物工廠的酸鹼度之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[76] 賴柏睿, 「結合Arduino及App程式於遠端控制LED植物成長燈之研究」,私立清雲科技大學電子工程研究所,碩士論文,民國一百零五年.
[77] 陳威宇, 「以共光程外差干涉儀作微小位移量測」, 國立中央大學光電科學研究所,碩士論文,民國九十四年六月.
[78] H.J. Kim, W.-K. Kim, M.-Y. Roh, C.-I. Kang, J.-M. Park, and K. A. Sudduth, “Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes,” Comput. Electron. Agricult., vol. 93, pp. 46–54, Apr. 2013.
[79] D. S. Domingues, H. W. Takahashi, C. A. P. Camara, and S. L. Nixdorf, “Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production,” Comput. Electron. Agricult., vol. 84, pp. 53–61, Jun. 2012.
[80] F. X. Rius-Ruiz, F. J. Andrade, J. Riu, and F. X. Rius, “Computeroperated analytical platform for the determination of nutrients in hydroponic systems,” Food Chem., vol. 147, pp. 92–97, Mar. 2014.
[81] R. Fan, X. Yang, H. Xie, and M.-A. Reeb, “Determination of nutrients in hydroponic solutions using mid-infrared Spectroscopy,” Sci. Horticulturae, vol. 144, pp. 48–54, Sep. 2012.
[82] A. J. S. Neto, S. Zolnier, and D. C. de Lopes, “Development and evaluation of an automated system for fertigation control in soilless tomato production,” Comput. Electron. Agricult., vol. 103, pp. 17–25, Apr. 2014.
[83] C. Dong, D. Hu, Y. Fu, M.Wang, and H. Liu, “Analysis and optimization of the effect of light and nutrient solution on wheat growth and development using an inverse system model strategy,” Comput. Electron. Agricult., vol. 109, pp. 221–231, Nov. 2014.
[84] M. Futagawa, Y. Ban, K. Kawashima, and K. Sawada, “On-site monitoring of soil condition for precision agriculture by using multimodal microchip integrated with EC and temperature sensors,” in Proc. IEEE TRANSDUCERS, Barcelona, pp. 112–115, Spain, Jun. 2013,
[85] M. J. S. M. Lenord and C. Sridevi, “Design of efficient hydroponic nutrient solution control system using soft computing based solution grading,” ICCPEIC, pp. 148–154, Apr. 2014.
[86] E. Soubies, L. Blanc-Feraud, S. Schaub, and G. Aubert, “A 3D model with shape prior information for biological structures reconstruction using multiple-angle total internal reflection fluorescence microscopy,” in Proc. IEEE 11th ISBI, pp. 608–611, China, 2014.
[87] Y. Liao, E. Austin, P. J. Nash, S. A. Kingsley, and D. J. Richardson, “Phase sensitivity characterization in fiber-optic sensor systems using amplifiers and TDM,” J. Light. Technol., vol. 31, no. 10, pp. 1645–1653, May 15, 2013.
[88] Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Magm. vol. 4, pp. 396-402, 1902.
[89] M. H. Chiu, C. H. Shih, M. H. Chi, “Optimum sensitivity fsingle-mode D-type optical fiber sensor in the intensity easurement,” Sens. Actuators.B, vol. 123, pp. 1120-1124, 2007.
[90] M. H. Chiu, S. F. Wang, R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Optics Letters, vol. 30, No. 3 pp. 233-235, 2005.
[91] S. F. Wang, M. H. Chiu, R. . Chang, “New idea for a D-type optical fiber sensor based on Kretschmann’s configuration,” Opt. Eng., vol. 44, pp. 4936-4938, 2005.
[92] L. Tong, Y. Shen, L. Ye, L. Chen, “Performance improvement of sapphire fiber optic sensor using a u-shaped reference fiber,” Proc. SPIE, Vol. 3555, Optical and Fiber Optic Sensor Systems, PP. 236, 1998.
[93] V.V.R. Saia, T. Kundub, S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosensors and Bioelectronics, vol. 24, pp. 2804-2809, 2009.
[94] T. J. Lin, M. F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, vol. 24, pp. 1213-1218, 2009.
[95] T. J. Lin, K. T. Huang, C. Y. Liu, “Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, vol. 22, Issue 4, pp. 513-518, 2006.
[96] T. J. Lin, C. T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” The Journal of Supercritical Fluids, vol. 41, pp. 317-325, 2007.
[97] L. K. Chau, Y. F. Lin, S. F. Cheng, Tsao-Jen Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 113, pp. 100-105, 2006.
[98] J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating” Sensors and Actuators B: Chemical, vol. 119, pp. 105-109, 2006.
[99] B.D. Gupta, A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study” Sensors and Actuators B: Chemical, vol. 107, pp. 40-46, 2005.
[100] A. K. Sharma, B.D. Gupta, “Fiber optic sensor based on surface plasmon resonance with nanoparticle films,” PNFA, vol. 3, pp. 30-37, 2005.
[101] S. F. Wang, C. W. Huang, C. Y. Liu, W. Lai, M. F. Hsieh, H. C. Chung, J. S. Chiu, Y. H. Liao, R. H. Yeh, “Reflective Type Liquid Refractometer Based on Multiple Total Internal Reflections and Attenuated Total Reflections in Heterodyne Interferometry,” IEEE, pp. 287-290, 2010.
[102] M. H. Chiu, J. Y. Lee, D. C. Su, K. H. Lee, “Vacuum measurement using total-internal-reflection heterodyne interferometry,” Precision Engineering, vol. 23, pp. 260-263, 1999.
[103] M. H. Chiu, J.Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt., Vol. 38, No. 19, pp. 4047-4052, 1999.
[104] P. K. Maharana, R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sensors and Actuators B: Chemical, vol. 169, pp. 161-166, 2012.
[105] R. Jha, A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sensors and Actuators A: Physical, vol. 165, pp. 271-275, 2011.
[106] I. A. Pronin, D. T. Dimitrov, L. K. Krasteva, K. I. Papazova, I. A. Averin, A. S. Chanachev, A. S. Bojinova, A. T. Georgieva, N. D. Yakushova, V. A. Moshnikov, “Theoretical and experimental investigations of ethanol vapour sensitive properties of junctions composed from produced by sol–gel technology pure and Fe modi?ed nanostructured ZnO thin ?lms,” Sensors and Actuators A: Physical, vol. 206, pp. 88-96, 2014.
[107] M. S. Islam, A. Z Kouzani, “Variable Incidence Angle Subwavelegth Grating SPR Graphene Biosensor,” IEEE EMBS, pp. 3024-3027, 2013.
[108] B. Chen, C. Liu, M. Ota, and K. Hayashi, “Terpene Detection Based on Localized Surface Plasma Resonance of Thiolate-Modified Au Nanoparticles,” IEEE Sensors Journal, vol. 13, pp. 1307-1314, 2013.
[109] K. P. Huang, C. H. Shen, J. H. Chen, “Common-path Heterodyne Interferometric and Magnetic Sensitivity-enhanced Surface Plasmon Resonance Carbon Monoxide gas sensor” IEEE ICST, pp. 406-410, 2013
[110] P. K. Maharana, P. Padhy, and R. Jha, “On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene,” IEEE Photonics TechnologyLetters, vol. 25, pp. 2156-2159, 2013.
[111] A. Armin, M. Soltanolkotabi, P. Feizollah, “On the pH and concentration response of an evanescent ?eld absorption sensor using a coiled-shape plastic optical ?ber,” Sensors and Actuators A: Physical, vol. 165, pp. 181-184, 2011.
[112] H. Chen, X. Wang, “A Novel Detector for Chromatography and Estradiol Immune Sensor Based on Surface Plasma Resonance”, IEEE-BMEI, pp. 1401-1404, China, 2010.
[113] B. R. Lu, L. Zhou, Z. Liu, Y. Wang, Y. Chen, and R. Liu, “Spectral Detection of Regenerated Silk Fibroin on a Two Dimensional Metallic Photonic Crystal Based SPR Biosensor,” IEEE-NANO, pp. 20-23, UK, 2012.
[114] H. F. Hsu, Z. W. Lin, Y. T. Huang, and C. J. Yuan, “Real-Time Detection of Protein Kinase A Activity by A Si-Based ARROW-B SPR Biosensor,” CLEO-PR, Japan, 2013.
[115] B. Liedberg, C. Nylander, I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983.
[116] S. F. Wang, H. Ma, F. H. Kao and A. L. Liu, “Polyhedron Biosensor Based on the Surface Plasmon Resonance technology in Heterodyne Interferometry”, Advanced Materials Research Vol. 716, 510-515 2013.
[117] Shen S, Liu T, Guo J. , “Optical phase-shift detection of surface plasmon resonance ”, Appl Opt, PP. 1747-51, 1998. |