博碩士論文 100621011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:100.24.122.228
姓名 葉宗鑫( Zong-sin Ye)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 東南亞生質燃燒源區及下風區氣膠與雲凝結核特性探討:泰北安康山與台灣鹿林山之比較分析
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中南半島人為活動於每年春(乾)季造成大量生質燃燒事件,其排放之氣膠與雲直接與間接交互作用,影響大氣輻射收支及水循環系統,因此對氣候變遷與人體健康造成重大影響,迄今全球較少科學家深入研究該地區生質燃燒排放之氣膠,故本研究為瞭解生質燃燒區域氣膠對雲凝結核之影響,於該地區定點量測氣膠物理及化學特性。

大氣氣膠之化學成分、混合型態,粒徑大小皆對雲凝結核形成有相當影響,故本研究於泰國安康山測站(19.93?N,99.05?E,1,536 m)和台灣鹿林山測站(23.47?N,120.87?E,2,862 m)兩地,利用雲凝結核計數器(CCNc)、掃描式電移動度粒徑分析儀(SMPS)、凝結核計數器(CPC)、氣膠微物理及光學儀器定點量測區域氣膠,藉此瞭解泰北生質燃燒區域氣膠之物化特性,並探討氣膠與雲凝結核活化特性之關聯性。觀測時間為2013年2月22日至4月8日。此期間為泰國乾(春)季,此區域生質燃燒事件持續發生,由後推軌跡分析,發現不同空氣源對氣膠物化特性有相當大之變異,分類為3事件。事件A為3月13 - 15日,此期間受境外傳輸及生質燃燒排放源影響,呈現吸濕性較佳和活化率較高之特徵;事件B為3月17 - 20日,此期間受生質燃燒排放影響最嚴重,吸濕性及活化率皆有下降之趨勢;事件C為3月22 - 24日,此期間氣團皆傳輸於邊界層之上,推測受老化作用後吸濕性及活化率降至最低。鹿林山測站位於中南半島及中國下風處,由後推軌跡發現觀測期間氣團經過中國人為污染區域和中南半島生質燃燒源區,推測氣膠物化特性會受影響,分類為3事件。事件I為3月13 - 15日,此期間受中南半島生質燃燒源區影響,氣膠特性呈現低吸濕性及活化率不高之特徵;事件II為3月16 - 18日,此期間氣團來源於中國東北、韓國和日本等地區,推測受人為污染影響;事件III為3月19 - 20日,此期間與事件I類似,但污染程度更為強烈。

總體而言,藉由本研究瞭解不同空氣源之氣膠受傳輸路徑及過程影響,使氣膠物化特性差異甚大,而近生質燃燒區域與源區下風處之量測結果,發現兩地氣膠物化特性之差異。
摘要(英) Indochina artificial activities cause a lot of biomass burning events in each spring (dry) season. The interaction between cloud and aerosol will not only affect radiation budget and water circulation system, but also the climate change and human health. According to above, the interaction must be taken into an issue, but the seldom research in the past literatures. In this study, we will investigate the artificial activities in Indochina, and discuss its interaction and influence.

Because atmospheric aerosols chemical composition, mixed patterns, and particle size can affect the formation of the cloud condensation nuclei, so we used CCN counter, SMPS sizer, CPC, and other aerosol instruments to do in-situ aerosol monitoring at Doi Ang Khang mountain, north of Thailand (19.93?N,99.05?E,1536m) and Lulin Mountain, Taiwan (23.47?N,120.87?E,2862m), then analyzed biomass burning aerosol properties and aerosol activation properties according to the data from these instruments. The observation time is during 2/22~4/8 2013. This period is Thailand's dry (spring) season, and this area occurred biomass burning events continually. By backward trajectory path analysis, we found that different air source’s aerosol properties have considerable variations, and we can classify into three events. The first event, A, is during 3/13~15. In this event, the impact of overseas transport and biomass burning showed the better hygroscopic and high activation ratio. The second event, B, is during 3/17~20, because the affection of biomass burning is serious and the biggest in these three events, so the hygroscopic and activation ratio decreased. The third event, C, is during 3/22~24, the air mass transportation is above the boundary layer. This study speculates that due to aerosol aging, so the hygroscopic and activation ratio are the lowest.

Lulin station located on the downstream of Indochina and China, and we found the trajectory of air mass pass through the artificially pollution area in China, and the biomass burning source regions in Indochina, so we speculated aerosol properties will affect by the trajectory of air mass. In this study, we classified into three events, too. The first event, I, is during 3/13~15. According to the result of the backward trajectory, we found that the aerosol property will be affected by biomass burning source region, showing the low hygroscopic and activation ratio. The second event, II, is during 3/16 ~18. Its air mass transportation is passed through the northeast of China, Korea, Japan and other regions, so the aerosol property will be affected by artificially pollution. The third event, III, is during 3/19~20. This event is similar to event I, but the degree of pollution is stronger.

Overall, the different source region and the influence of transported path will cause the more variations of the aerosol properties, and the result of the downstream test shows different property between these two regions. Combining these into results, the research of Indochina artificial activities will be completed and the influence of Cloud Condensation Nuclei (CCN) will also be clearly in this study.
關鍵字(中) ★ 生質燃燒
★ 雲凝結核
★ 鹿林山
關鍵字(英) ★ biomass burning
★ cloud condensation nuclei
★ CCN
論文目次 第一章 前言 ................................ ................................ ................................ .............. 1
1.1. 研究動機 ................................ ................................ ................................ ...... 1
1.2. 研究目的 ................................ ................................ ................................ ...... 3
第二章 文獻回顧 ................................ ................................ ................................ ...... 4
2.1. 大氣膠來源及分類 ................................ ................................ .................. 4
2.2. 氣膠之光學特性與輻射效應 ................................ ................................ ...... 8
2.3. 氣膠之含水量與 吸濕特性 ................................ ................................ ......... 11
2.4. 氣膠與雲交互作用的物理機制 ................................ ................................ 16
2.5. 雲凝結核之微物理特性 ................................ ................................ ............ 18
2.6. 生質燃燒 ................................ ................................ ................................ .... 20
第三章 研究方法 ................................ ................................ ................................ .... 23
3.1. 觀測時間、地點與方氣候 ................................ ................................ .... 23
3.2. 實驗設計與觀測儀器 ................................ ................................ ................ 25
3.3. 實驗結果分析方法 ................................ ................................ .................... 31
第四章 觀測結果與討論 ................................ ................................ ........................ 34
4.1. 歷年區域氣象條件 ................................ ................................ .................... 34
ix
4.2. 氣流後推軌跡與 MO DISDIS 衛星觀測資料再分析 ................................ ..... 35
4.3. 不同地域凝結核 (CN) 之微物理特性探討 之微物理特性探討 ................................ ................ 37
4.4. 不同地域雲凝結核 (CCN) 數量濃度與活化率探討 數量濃度與活化率探討 ................................ . 40
4.5. 個案分析 ................................ ................................ ................................ .... 41
4.6. 不同地域之結果比較 ................................ ................................ ................ 48
4.7. 化學分析 ................................ ................................ ................................ .... 51
4.8. 氣膠吸濕特性分析 ................................ ................................ .................... 54
第五章 結論與未來展望 ................................ ................................ ........................ 57
5.1. 結論 ................................ ................................ ................................ ............ 57
5.2. 未來展望 ................................ ................................ ................................ .... 60
附錄 ................................ ................................ ................................ .............................. 148
參考文獻 ................................ ................................ ................................ ........................ 61
參考文獻 Abel, S. J., Haywood, J. M., Highwood, E. J., Li, J., and Buseck, P. R. (2003). Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophysical Research Letters 30.
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 1014-1017.
Adler, G., Flores, J., Abo Riziq, A., Borrmann, S., and Rudich, Y. (2011). Chemical, physical, and optical evolution of biomass burning aerosols: a case study. Atmospheric Chemistry and Physics 11, 1491-1503.
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227-1230.
Andreae, M., and Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews 89, 13-41.
Andreae, M., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M. (2004). Smoking rain clouds over the Amazon. Science 303, 1337-1342.
Andreae, M. O. (2009). Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmospheric Chemistry and Physics 9, 543-556.
Andreae, M. O., Jones, C. D., and Cox, P. M. (2005). Strong present-day aerosol cooling implies a hot future. Nature 435, 1187-1190.
Asa?Awuku, A., Moore, R. H., Nenes, A., Bahreini, R., Holloway, J. S., Brock, C. A., Middlebrook, A. M., Ryerson, T. B., Jimenez, J. L., and DeCarlo, P. F. (2011). Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research: Atmospheres (1984–2012) 116.
Baumer, D., Vogel, B., Versick, S., Rinke, R., Mohler, O., and Schnaiter, M. (2008). Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany. Atmospheric Environment 42, 989-998.
Bates, T. S., Charlson, R. J., and Gammon, R. H. (1987). Evidence for the climatic role of marine biogenic sulphur.
Bauer, S., Bierwirth, E., Esselborn, M., Petzold, A., Macke, A., Trautmann, T., and Wendisch, M. (2011). Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles. Tellus B 63, 742-750.
Bergstrom, R. W., Pilewskie, P., Russell, P., Redemann, J., Bond, T., Quinn, P., and Sierau, B. (2007). Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics 7, 5937-5943.
Boucher, O., and Anderson, T. L. (1995). General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research 100, 26117-26,134.
Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S., Nenes, A., and Mihalopoulos, N. (2009). Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics. Atmospheric Chemistry and Physics Discussions 9, 10303-10336.
Charlson, R. J., Schwartz, S., Hales, J., Cess, R. D., COAKLEY, j. J., Hansen, J., and Hofmann, D. (1992). Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Chen, Q., Farmer, D., Schneider, J., Zorn, S., Heald, C., Karl, T., Guenther, A., Allan, J., Robinson, N., and Coe, H. (2009). Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters 36, L20806.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Solomon, P. A., Magliano, K. L., Ziman, S. D., and Richards, L. W. (1993). PM10 and PM2. 5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Colton, J. S., and Suh, N. P. (1987). Nucleation of microcellular foam: theory and practice. Polymer Engineering & Science 27, 500-503.
Corr, C., Hall, S., Ullmann, K., Anderson, B., Beyersdorf, A., Thornhill, K., Cubison, M., Jimenez, J., Wisthaler, A., and Dibb, J. (2012). Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics 12, 10505-10518.
Corr, C., Krotkov, N., Madronich, S., Slusser, J., Holben, B., Gao, W., Flynn, J., Lefer, B., and Kreidenweis, S. (2009). Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmospheric Chemistry and Physics 9, 5813-5827.
Cziczo, D., Nowak, J., Hu, J., and Abbatt, J. (1997). Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization. Journal of geophysical research 102, 18843-18,850.
Despres, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Frohlich-Nowoisky, J., Elbert, W., Andreae, M. O., and Poschl, U. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B 64.
Dusek, U., Frank, G., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G., Hennig, T., Wiedensohler, A., and Andreae, M. (2011). Water uptake by biomass burning aerosol at sub-and supersaturated conditions: closure studies and implications for the role of organics. Atmospheric Chemistry and Physics 11, 9519-9532.
Engelhart, G., Hennigan, C., Miracolo, M., Robinson, A., and Pandis, S. (2012). Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmospheric Chemistry and Physics 12, 7285-7293.
Fan, J., Zhang, R., Tao, W. K., and Mohr, K. I. (2008). Effects of aerosol optical properties on deep convective clouds and radiative forcing. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Fastrup, B., Pedersen, E., Lillestol, E., Thorn, E., Bosteels, M., Gonidec, A., Harigel, G., Kirkby, J., Mele, S., and Minginette, P. (2000). A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS. Preprint CERN/SPSC 21.
Fishman, J., Solomon, S., and Crutzen, P. J. (1979). Observational and theoretical evidence in support of a significant in?situ photochemical source of tropospheric ozone. Tellus 31, 432-446.
Hand, J., Kreidenweis, S., Eli Sherman, D., Collett Jr, J., Hering, S., Day, D., and Malm, W. (2002). Aerosol size distributions and visibility estimates during the Big Bend regional aerosol and visibility observational (BRAVO) study. Atmospheric Environment 36, 5043-5055.
Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., and Menon, S. (2005). Earth's energy imbalance: Confirmation and implications. science 308, 1431-1435.
Hauglustaine, D., Brasseur, G., and Levine, J. (1999). A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions. Geophysical research letters 26, 3305-3308.
Haywood, J., and Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 38, 513-543.
Heinold, B., Tegen, I., Schepanski, K., Tesche, M., Esselborn, M., Freudenthaler, V., Gross, S., Kandler, K., Knippertz, P., and Muller, D. (2011). Regional modelling of Saharan dust and biomass?burning smoke. Tellus B 63, 781-799.
Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L. (2010). Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters 37.
Henry, R. C. (1977). The application of the linear system theory of visual acuity to visibility reduction by aerosols. Atmospheric Environment (1967) 11, 697-701.
Huff Hartz, K. E., Rosenorn, T., Ferchak, S. R., Raymond, T. M., Bilde, M., Donahue, N. M., and Pandis, S. N. (2005). Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. Journal of Geophysical Research: Atmospheres (1984–2012) 110.
Hung, H.-M., Lu, W.-J., Chen, W.-N., Chang, C.-C., Chou, C. C.-K., and Lin, P.-H. (2014). Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions. Atmospheric Environment 84, 78-87.
IPCC (2007). Climate change 2007: the physical science basis. Agenda 6.
Jacobson, M., Hansson, H. C., Noone, K., and Charlson, R. (2000). Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics 38, 267-294.
Jacobson, M. Z. (2001). Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. Journal of Geophysical Research 106, 1551-1568.
Jacobson, R. A. (2004). The orbits of the major saturnian satellites and the gravity field of Saturn from spacecraft and Earth-based observations. The Astronomical Journal 128, 492.
Jayaraman, A., Lubin, D., Ramachandran, S., Ramanathan, V., Woodbridge, E., Collins, W., and Zalpuri, K. (1998). Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January?February 1996 pre?INDOEX cruise. Journal of Geophysical Research: Atmospheres (1984–2012) 103, 13827-13836.
Johnson, B., Osborne, S., Haywood, J., and Harrison, M. (2008). Aircraft measurements of biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Kammermann, L., Gysel, M., Weingartner, E., Herich, H., Cziczo, D. J., Holst, T., Svenningsson, B., Arneth, A., and Baltensperger, U. (2010). Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei. Journal of Geophysical Research 115, D04202.
Kassianov, E., Barnard, J., Berg, L. K., Long, C. N., and Flynn, C. (2011). Shortwave spectral radiative forcing of cumulus clouds from surface observations. Geophysical Research Letters 38.
Kaufman, Y. J., and Fraser, R. S. (1997). The effect of smoke particles on clouds and climate forcing. Science 277, 1636-1639.
Kaufman, Y. J., and Tanre, D. (1996). Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS. Remote Sensing of Environment 55, 65-79.
Kaufman, Y. J., Tanre, D., and Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature 419, 215-223.
Khalizov, A. F., Zhang, R., Zhang, D., Xue, H., Pagels, J., and McMurry, P. H. (2009). Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor. Journal of Geophysical Research: Atmospheres (1984–2012) 114.
Knutti, R., Allen, M., Friedlingstein, P., Gregory, J., Hegerl, G., Meehl, G., Meinshausen, M., Murphy, J., Plattner, G.-K., and Raper, S. (2008). A review of uncertainties in global temperature projections over the twenty-first century. Journal of Climate 21, 2651-2663.
Krotkov, N., Bhartia, P. K., Herman, J., Slusser, J., Scott, G., Labow, G., Vasilkov, A. P., Eck, T. F., Dubovik, O., and Holben, B. N. (2005). Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: Absorption optical thickness, refractive index, and single scattering albedo. Optical Engineering 44, 041005-041005-17.
Lathem, T., Beyersdorf, A., Thornhill, K., Winstead, E., Cubison, M., Hecobian, A., Jimenez, J., Weber, R., Anderson, B., and Nenes, A. (2012). Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmospheric Chemistry and Physics Discussions 12, 24677-24733.
Lee, C. T., Chuang, M. T., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, S. C., Wang, S. H., Huang, H., Chen, H. W., and Liu, Y. L. (2011). The enhancement of PM< sub> 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, J., and Kim, Y. (2007). Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity. Atmospheric Chemistry and Physics 7, 3587-3596.
Li, C., Tsay, S. C., Hsu, N. C., Kim, J. Y., Howell, S. G., Huebert, B. J., Ji, Q., Jeong, M. J., Wang, S. H., and Hansell, R. A. (2012). Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA. Atmospheric Environment.
Lin, N. H., Tsay, S. C., Maring, H. B., Yen, M. C., Sheu, G. R., Wang, S. H., Chi, K. H., Chuang, M. T., Ou-Yang, C. F., and Fu, J. S. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment.
Liousse, C., Penner, J., Chuang, C., Walton, J., Eddleman, H., and Cachier, H. (1996). A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research 101, 19411-19,432.
Malm, W. C., and Persha, G. (1991). Considerations in the accuracy of a long-path transmissometer. Aerosol Science and technology 14, 459-471.
Marley, N., Gaffney, J., Castro, T., Salcido, A., and Frederick, J. (2009). Measurements of aerosol absorption and scattering in the Mexico City Metropolitan Area during the MILAGRO field campaign: a comparison of results from the T0 and T1 sites. Atmospheric Chemistry and Physics 9, 189-206.
McMurry, P., Zhang, X., Sloane, C., and White, W. (1991). "Optical properties of Los Angeles aerosols: An analysis of data acquired during SCAQS. Final report." Minnesota Univ., Minneapolis, MN (United States). Particle Technology Lab.
Michel Flores, J., Bar-Or, R., Bluvshtein, N., Abo-Riziq, A., Kostinski, A., Borrmann, S., Koren, I., and Rudich, Y. (2012). Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties. Atmospheric Chemistry and Physics 12, 5511-5521.
Moore, R. H., Nenes, A., and Medina, J. (2010). Scanning mobility CCN analysis—A method for fast measurements of size-resolved CCN distributions and activation kinetics. Aerosol Science and Technology 44, 861-871.
Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T., Higurashi, A., Takamura, T., Aoki, K., Sohn, B. J., and Kim, S. W. (2007). Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. Journal of geophysical research 112, D24S91.
Novakov, T., and Penner, J. (1993). Large contribution of organic aerosols to cloud-condensation-nuclei concentrations.
Poschl, U. (2009). Interactive comment on “Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics” by A. Bougiatioti et al.
Poschl, U., Martin, S., Sinha, B., Chen, Q., Gunthe, S., Huffman, J., Borrmann, S., Farmer, D., Garland, R., and Helas, G. (2010). Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513-1516.
Patterson, E., and McMahon, C. K. (1984). Absorption characteristics of forest fire particulate matter. Atmospheric Environment (1967) 18, 2541-2551.
Patterson, E., McMahon, C. K., and Ward, D. (1986). Absorption properties and graphitic carbon emission factors of forest fire aerosols. Geophysical Research Letters 13, 129-132.
Petters, J., Saxena, V., Slusser, J., Wenny, B., and Madronich, S. (2003). Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model. Journal of geophysical research 108, 4288.
Petters, M., and Kreidenweis, S. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961-1971.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P. J., Collett, J. L., and Moosmuller, H. (2009). Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research: Atmospheres (1984–2012) 114.
Pilinis, C., and Seinfeld, J. H. (1988). Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967) 22, 1985-2001.
Platnick, S., and Twomey, S. (1994). Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. Journal of Applied Meteorology 33, 334-347.
Pringle, K., Tost, H., Pozzer, A., Poschl, U., and Lelieveld, J. (2010). Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmospheric Chemistry and Physics 10, 5241-5255.
Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. science 294, 2119-2124.
Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., and Winker, D. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature 448, 575-578.
Reddington, C., McMeeking, G., Mann, G., Coe, H., Frontoso, M., Liu, D., Flynn, M., Spracklen, D., and Carslaw, K. (2013). The mass and number size distributions of black carbon aerosol over Europe. Atmospheric Chemistry and Physics 13, 4917-4939.
Reid, J., Koppmann, R., Eck, T., and Eleuterio, D. (2005a). A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D., Holben, B. N., Reid, E. A., and Zhang, J. (2005b). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 827-849.
Roberts, G. C., and Nenes, A. (2005). A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Science and Technology 39, 206-221.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. (1993). Sources of fine organic aerosol. 5. Natural gas home appliances. Environmental science & technology 27, 2736-2744.
Russell, P., Bergstrom, R., Shinozuka, Y., Clarke, A., DeCarlo, P., Jimenez, J., Livingston, J., Redemann, J., Dubovik, O., and Strawa, A. (2010). Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics 10, 1155-1169.
Satheesh, S., and Ramanathan, V. (2000). Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface. Nature 405, 60-63.
Saxena, V., Burford, J., and Kassner Jr, J. (1970). Operation of a thermal diffusion chamber for measurements on cloud condensation nuclei. Journal of Atmospheric Sciences 27, 73-80.
Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.-H., Saathoff, H., and Schock, O. (2003). UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. Journal of Aerosol Science 34, 1421-1444.
Schwartz, S. E., and Andreae, M. O. (1996). Uncertainty in climate change caused by aerosols. SCIENCE-NEW YORK THEN WASHINGTON-, 1121-1121.
Sellers, P., Rienecker, M., Frolking, S., and Randall, D. (2012). Earth System Modeling and Field Experiments in the Arctic-?Boreal Zone.
Shantz, N. C., Leaitch, W. R., and Caffrey, P. F. (2003). Effect of organics of low solubility on the growth rate of cloud droplets. Journal of Geophysical Research: Atmospheres 108, 4168.
Shantz, N. C., Pierce, J. R., Chang, R. Y. W., Vlasenko, A., Riipinen, I., Sjostedt, S., Slowik, J. G., Wiebe, A., Liggio, J., Abbatt, J. P. D., and Leaitch, W. R. (2012). Cloud condensation nuclei droplet growth kinetics of ultrafine particles during anthropogenic nucleation events. Atmospheric Environment 47, 389-398.
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A. (2004). The role of surfactants in Kohler theory reconsidered. Atmos. Chem. Phys. 4, 2107-2117.
Srinivasan, J., and Gadgil, S. (2002). Asian brown cloud: Fact and fantasy. Current Science 83, 586-592.
Streets, D., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S., Tsai, N., and Wang, M. Q. (2003a). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research: Atmospheres (1984–2012) 108.
Streets, D., Bond, T., Lee, T., and Jang, C. (2004). On the future of carbonaceous aerosol emissions. Journal of Geophysical Research: Atmospheres (1984–2012) 109.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F. (2003b). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research: Atmospheres 108, 8809.
Tesche, M., Muller, D., Gross, S., Ansmann, A., Althausen, D., Freudenthaler, V., Weinzierl, B., Veira, A., and Petzold, A. (2011). Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus B 63, 677-694.
Teuten, E. L., Xu, L., and Reddy, C. M. (2005). Two Abundant Bioaccumulated Halogenated Compounds Are Natural Products. Science 307, 917-920.
Twomey (1974). Pollution and the planetary albedo. Atmospheric Environment (1967) 8, 1251-1256.
Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the atmospheric sciences 34, 1149-1152.
Vallero, D. (2010). "Environmental biotechnology: a biosystems approach," Academic Press.
Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H., Lawson, D. R., and Ashbaugh, L. L. (1994). Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study. Aerosol Science and Technology 21, 1-36.
Wild, M. (1999). Discrepancies between model?calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. Journal of Geophysical Research: Atmospheres (1984–2012) 104, 27361-27371.
Wild, M. (2005). Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophysical research letters 32.
Wild, M. (2009). Global dimming and brightening: A review. Journal of Geophysical Research: Atmospheres 114, D00D16.
Wu, Z., Birmili, W., Poulain, L., Wang, Z., Merkel, M., Fahlbusch, B., Pinxteren, D. v., Herrmann, H., and Wiedensohler, A. (2013). Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth. Atmospheric Chemistry and Physics 13, 6637-6646.
Yen, M. C., Peng, C. M., Chen, T. C., Chen, C. S., Lin, N. H., Tzeng, R. Y., Lee, Y. A., and Lin, C. C. (2012). Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment.
Yue, D. L., Hu, M., Zhang, R. Y., Wu, Z. J., Su, H., Wang, Z. B., Peng, J. F., He, L. Y., Huang, X. F., Gong, Y. G., and Wiedensohler, A. (2011). Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment 45, 6070-6077.
Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. X., and McMurry, P. H. (2008). Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proceedings of the National Academy of Sciences of the United States of America 105, 10291-10296.
Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Strom, J., Henne, S., Yttri, K. E., Baltensperger, U., and Weingartner, E. (2010). Effects of relative humidity on aerosol light scattering in the Arctic. Atmospheric Chemistry and Physics 10, 3875-3890.
姜善鑫 (1991). 燃燒對氣候的影響. 科學月刊, 第253期.
張士昱 (2002). 易潮解無機氣膠含水特性之研究. 國立中央大學環境工程研究所博士論文.
指導教授 林能暉、蕭大智
(Neng-huei Lin、Ta-chin Hsiao)
審核日期 2014-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明